Handbook of Robotics Chapter 64: Perceptual Robotics: Example-based representations of shapes and movements

[1]  Rómer Rosales,et al.  Inferring body pose without tracking body parts , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[2]  Lance Williams,et al.  Motion signal processing , 1995, SIGGRAPH.

[3]  K. Doya,et al.  A unifying computational framework for motor control and social interaction. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[4]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[5]  Tomaso Poggio,et al.  Generalization in vision and motor control , 2004, Nature.

[6]  James V. Stone,et al.  Object recognition: view-specificity and motion-specificity , 1999, Vision Research.

[7]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Maja J. Mataric,et al.  Performance-Derived Behavior Vocabularies: Data-Driven Acquisition of Skills from Motion , 2004, Int. J. Humanoid Robotics.

[9]  D. Marr,et al.  Representation and recognition of the spatial organization of three-dimensional shapes , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[10]  Ankur Agarwal,et al.  Recovering 3D human pose from monocular images , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Jake K. Aggarwal,et al.  Human motion analysis: a review , 1997, Proceedings IEEE Nonrigid and Articulated Motion Workshop.

[12]  Dariu Gavrila,et al.  The Visual Analysis of Human Movement: A Survey , 1999, Comput. Vis. Image Underst..

[13]  David G. Lowe,et al.  Perceptual Organization and Visual Recognition , 2012 .

[14]  Heinrich H. Bülthoff,et al.  Psychophysical evaluation of animated facial expressions , 2005, APGV '05.

[15]  T. Poggio,et al.  Cognitive neuroscience: Neural mechanisms for the recognition of biological movements , 2003, Nature Reviews Neuroscience.

[16]  Hans-Hellmut Nagel,et al.  Tracking Persons in Monocular Image Sequences , 1999, Comput. Vis. Image Underst..

[17]  Heinrich H. Bülthoff,et al.  View-Based Recognition of Faces in Man and Machine: Re-Visiting Inter-Extra-Ortho , 2002, Biologically Motivated Computer Vision.

[18]  M. Tarr,et al.  Mental rotation and orientation-dependence in shape recognition , 1989, Cognitive Psychology.

[19]  D I Perrett,et al.  Visual Recognition Based on Temporal Cortex Cells: Viewer-Centred Processing of Pattern Configuration , 1998, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[20]  Edmund T. Rolls,et al.  A Model of Invariant Object Recognition in the Visual System: Learning Rules, Activation Functions, Lateral Inhibition, and Information-Based Performance Measures , 2000, Neural Computation.

[21]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[22]  Shimon Edelman,et al.  Representation and recognition in vision , 1999 .

[23]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[24]  M. Tarr,et al.  Testing conditions for viewpoint invariance in object recognition. , 1997, Journal of experimental psychology. Human perception and performance.

[25]  M. Giese,et al.  Learning to discriminate complex movements: biological versus artificial trajectories. , 2006, Journal of vision.

[26]  Martin A. Giese,et al.  On the Representation, Learning and Transfer of Spatio-Temporal Movement Characteristics , 2003, Int. J. Humanoid Robotics.

[27]  Werner X. Schneider,et al.  Structural descriptions in HIT − a problematic commitment , 2001 .

[28]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[29]  F. Newell,et al.  Categorical perception of sex occurs in familiar but not unfamiliar faces , 2004 .

[30]  Keiji Tanaka,et al.  Representation of Visual Features of Objects in the Inferotemporal Cortex , 1996, Neural Networks.

[31]  J. Ewert Neural mechanisms of prey-catching and avoidance behavior in the toad (Bufo bufo L.). , 1970, Brain, behavior and evolution.

[32]  Martin A. Giese,et al.  Morphable Models for the Analysis and Synthesis of Complex Motion Patterns , 2000, International Journal of Computer Vision.

[33]  S. Lederman,et al.  Haptic face identification activates ventral occipital and temporal areas: An fMRI study , 2005, Brain and Cognition.

[34]  Sameer Singh,et al.  Video analysis of human dynamics - a survey , 2003, Real Time Imaging.

[35]  H. Bülthoff,et al.  The use of facial motion and facial form during the processing of identity , 2003, Vision Research.

[36]  W. H. Warren The dynamics of perception and action. , 2006, Psychological review.

[37]  T. Poggio,et al.  A network that learns to recognize three-dimensional objects , 1990, Nature.

[38]  Stefan Schaal,et al.  http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained , 2007 .

[39]  M. Kurbat Structural Description Theories: Is RBC/JIM a General-Purpose Theory of Human Entry-Level Object Recognition? , 1994, Perception.

[40]  Hyeong-Seok Ko,et al.  A physically-based motion retargeting filter , 2005, TOGS.

[41]  Tomaso A. Poggio,et al.  Linear Object Classes and Image Synthesis From a Single Example Image , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  C. Colby Action-Oriented Spatial Reference Frames in Cortex , 1998, Neuron.

[43]  Barbara Caputo,et al.  Recognition with local features: the kernel recipe , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[44]  Thomas Vetter,et al.  A morphable model for the synthesis of 3D faces , 1999, SIGGRAPH.

[45]  Aina Puce,et al.  Electrophysiology and brain imaging of biological motion. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[46]  T. Valentine The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology a Unified Account of the Effects of Distinctiveness, Inversion, and Race in Face Recognition , 2022 .

[47]  Ronen Basri,et al.  Recognition by Linear Combinations of Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  David A. Forsyth,et al.  Motion synthesis from annotations , 2003, ACM Trans. Graph..

[49]  A F Bobick,et al.  Movement, activity and action: the role of knowledge in the perception of motion. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[50]  Gregor Schöner,et al.  Dynamics of behavior: Theory and applications for autonomous robot architectures , 1995, Robotics Auton. Syst..

[51]  A. Opstal Dynamic Patterns: The Self-Organization of Brain and Behavior , 1995 .

[52]  G. Sandini,et al.  Understanding mirror neurons. , 2006 .

[53]  P. Kornprobst,et al.  Could early visual processes be sufficient to label motions? , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[54]  D. Foster,et al.  Recognizing novel three–dimensional objects by summing signals from parts and views , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[55]  Jun Tani,et al.  Self-organization of behavioral primitives as multiple attractor dynamics: A robot experiment , 2003, IEEE Trans. Syst. Man Cybern. Part A.

[56]  H. Bülthoff,et al.  Effects of temporal association on recognition memory , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Thomas Serre,et al.  Object recognition with features inspired by visual cortex , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[58]  H. Bülthoff,et al.  Learning to recognize objects , 1999, Trends in Cognitive Sciences.

[59]  Simon J Thorpe,et al.  SpikeNET: an event-driven simulation package for modelling large networks of spiking neurons , 2003, Network.

[60]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, SIGGRAPH 2004.

[61]  Ken-ichi Anjyo,et al.  Fourier principles for emotion-based human figure animation , 1995, SIGGRAPH.

[62]  H H Bülthoff,et al.  Psychophysical support for a two-dimensional view interpolation theory of object recognition. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Y. LeCun,et al.  Learning methods for generic object recognition with invariance to pose and lighting , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[64]  D. Marr,et al.  Representation and recognition of the movements of shapes , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[65]  Heinrich H. Bülthoff,et al.  Facial Animation Based on 3D Scans and Motion Capture , 2003, SIGGRAPH 2003.

[66]  Alex Pentland,et al.  Coding, Analysis, Interpretation, and Recognition of Facial Expressions , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[67]  Aaron Hertzmann,et al.  Style machines , 2000, SIGGRAPH 2000.

[68]  F. Pollick,et al.  Exaggerating Temporal Differences Enhances Recognition of Individuals from Point Light Displays , 2000, Psychological science.

[69]  Randolph Blake,et al.  Learning to See Biological Motion: Brain Activity Parallels Behavior , 2004, Journal of Cognitive Neuroscience.

[70]  Michael Gleicher,et al.  Constraint‐based motion adaptation , 1998 .

[71]  M. Tarr,et al.  Rotation direction affects object recognition , 2004, Vision Research.

[72]  K. Grill-Spector,et al.  The human visual cortex. , 2004, Annual review of neuroscience.

[73]  M. Giese,et al.  Norm-based face encoding by single neurons in the monkey inferotemporal cortex , 2006, Nature.

[74]  Heinrich H. Bülthoff,et al.  Automatic acquisition of exemplar-based representations for recognition from image sequences , 2001, CVPR 2001.

[75]  Timothy F. Cootes,et al.  Automatic Interpretation and Coding of Face Images Using Flexible Models , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[76]  H. Sakata The role of the parietal cortex in grasping. , 2003, Advances in neurology.

[77]  Thomas B. Moeslund,et al.  A Survey of Computer Vision-Based Human Motion Capture , 2001, Comput. Vis. Image Underst..

[78]  K. Verfaillie Perceiving Human Locomotion: Priming Effects in Direction Discrimination , 2000, Brain and Cognition.

[79]  S. Ullman Aligning pictorial descriptions: An approach to object recognition , 1989, Cognition.

[80]  Tomaso Poggio,et al.  Incorporating prior information in machine learning by creating virtual examples , 1998, Proc. IEEE.

[81]  N. Logothetis,et al.  View-dependent object recognition by monkeys , 1994, Current Biology.

[82]  Keiji Tanaka,et al.  Functional architecture in monkey inferotemporal cortex revealed by in vivo optical imaging , 1998, Neuroscience Research.

[83]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[84]  J. Wolfe,et al.  The Representation of Location in Visual Images , 1994, Cognitive Psychology.

[85]  D. D. Hoffman,et al.  The interpretation of biological motion , 1982, Biological Cybernetics.

[86]  H. Bülthoff,et al.  Viewpoint Dependence in Visual and Haptic Object Recognition , 2001, Psychological science.

[87]  G. Rizzolatti,et al.  The mirror neuron system. , 2009, Archives of neurology.

[88]  A. O'Toole,et al.  Prototype-referenced shape encoding revealed by high-level aftereffects , 2001, Nature Neuroscience.

[89]  A. O'Toole,et al.  Recognizing moving faces: a psychological and neural synthesis , 2002, Trends in Cognitive Sciences.

[90]  Alison J. Wiggett,et al.  Patterns of fMRI Activity Dissociate Overlapping Functional Brain Areas that Respond to Biological Motion , 2006, Neuron.

[91]  M. Tarr Rotating objects to recognize them: A case study on the role of viewpoint dependency in the recognition of three-dimensional objects , 1995, Psychonomic bulletin & review.

[92]  Michael J. Black,et al.  Parameterized Modeling and Recognition of Activities , 1999, Comput. Vis. Image Underst..

[93]  P. Schyns,et al.  Information and viewpoint dependence in face recognition , 1997, Cognition.

[94]  Glyn W. Humphreys,et al.  View-specific effects of depth rotation and foreshortening on the initial recognition and priming of familiar objects , 1998, Perception & psychophysics.

[95]  Lucas Kovar,et al.  Motion graphs , 2002, SIGGRAPH Classes.

[96]  D. Perrett,et al.  Evidence accumulation in cell populations responsive to faces: an account of generalisation of recognition without mental transformations , 1998, Cognition.

[97]  Lawrence G. Roberts,et al.  Machine Perception of Three-Dimensional Solids , 1963, Outstanding Dissertations in the Computer Sciences.

[98]  G. Johansson Visual perception of biological motion and a model for its analysis , 1973 .

[99]  Thomas Vetter,et al.  Three-dimensional shape and two-dimensional surface reflectance contributions to face recognition: an application of three-dimensional morphing , 1999, Vision Research.

[100]  H. Nagel,et al.  Tracking of persons in monocular image sequences , 1997, Proceedings IEEE Nonrigid and Articulated Motion Workshop.

[101]  Jake K. Aggarwal,et al.  Structure from Motion of Rigid and Jointed Objects , 1981, Artif. Intell..

[102]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[103]  Martin A. Giese,et al.  Combining View-Based and Model-Based Tracking of Articulated Human Movements , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[104]  S. Edelman,et al.  Imperfect Invariance to Object Translation in the Discrimination of Complex Shapes , 2001, Perception.

[105]  S. Ullman High-Level Vision: Object Recognition and Visual Cognition , 1996 .