Combinatorial and algorithmic aspects of identifying codes in graphs. (Aspects combinatoires et algorithmiques des codes identifiants dans les graphes)
暂无分享,去创建一个
[1] Gregory Gutin,et al. Digraphs - theory, algorithms and applications , 2002 .
[2] Petri Rosendahl. On the Identification of Vertices Using Cycles , 2003, Electron. J. Comb..
[3] Bojan Mohar,et al. Crossing numbers of Sierpiński‐like graphs , 2005, J. Graph Theory.
[4] N. Alon,et al. The Probabilistic Method: Alon/Probabilistic , 2008 .
[5] Stephen A. Cook,et al. The complexity of theorem-proving procedures , 1971, STOC.
[6] Gregory Gutin,et al. Parameterizations of Test Cover with Bounded Test Sizes , 2014, Algorithmica.
[7] K. Wagner. Über eine Eigenschaft der ebenen Komplexe , 1937 .
[8] José Cáceres,et al. Locating dominating codes: Bounds and extremal cardinalities , 2012, Appl. Math. Comput..
[9] L. Lovász,et al. Polynomial Algorithms for Perfect Graphs , 1984 .
[10] Alan A. Bertossi,et al. Dominating Sets for Split and Bipartite Graphs , 1984, Inf. Process. Lett..
[11] Jean-Sébastien Sereni,et al. Identifying and Locating-Dominating Codes in (Random) Geometric Networks , 2009, Comb. Probab. Comput..
[12] Sepp Hartung,et al. On the Parameterized and Approximation Hardness of Metric Dimension , 2012, 2013 IEEE Conference on Computational Complexity.
[13] Alan M. Frieze,et al. Random graphs , 2006, SODA '06.
[14] Mathias Hauptmann,et al. Approximation complexity of Metric Dimension problem , 2012, J. Discrete Algorithms.
[15] Gérard D. Cohen,et al. On Codes Identifying Vertices in the Two-Dimensional Square Lattice with Diagonals , 2001, IEEE Trans. Computers.
[16] Andreas J. Winter. Another Algebraic Proof of Bondy's Theorem on Induced Subsets , 2000, J. Comb. Theory, Ser. A.
[17] David P. Sumner. Point determination in graphs , 1973, Discret. Math..
[18] Rajeev Motwani,et al. On syntactic versus computational views of approximability , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[19] A. Brandstädt,et al. Graph Classes: A Survey , 1987 .
[20] Bruce A. Reed. Paths, Stars and the Number Three , 1996, Comb. Probab. Comput..
[21] David Auger,et al. On the existence of a cycle of length at least 7 in a (1, \le 2)-twin-free graph , 2010, Discuss. Math. Graph Theory.
[22] Douglas B. West,et al. The interval number of a planar graph: Three intervals suffice , 1983, J. Comb. Theory, Ser. B.
[23] Paul D. Seymour,et al. Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.
[24] Dorit S. Hochba,et al. Approximation Algorithms for NP-Hard Problems , 1997, SIGA.
[25] László Babai,et al. On the Complexity of Canonical Labeling of Strongly Regular Graphs , 1980, SIAM J. Comput..
[26] Peter Damaschke,et al. Domination in Convex and Chordal Bipartite Graphs , 1990, Inf. Process. Lett..
[27] L. Beineke. Characterizations of derived graphs , 1970 .
[28] Jukka Suomela,et al. Approximability of identifying codes and locating-dominating codes , 2007, Inf. Process. Lett..
[29] Eleonora Guerrini,et al. Extremal graphs for the identifying code problem , 2011, Eur. J. Comb..
[30] Teresa W. Haynes,et al. A quantitative analysis of secondary RNA structure using domination based parameters on trees , 2006, BMC Bioinformatics.
[31] Bruno Courcelle,et al. Linear Time Solvable Optimization Problems on Graphs of Bounded Clique Width , 1998, WG.
[32] Sanna M. Ranto,et al. Identifying and Locating- Dominating Codes in Binary Hamming Spaces , 2007 .
[33] Michael A. Henning,et al. Distinguishing-Transversal in Hypergraphs and Identifying Open Codes in Cubic Graphs , 2014, Graphs Comb..
[34] Paul D. Seymour,et al. Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.
[35] Viggo Kann,et al. Some APX-completeness results for cubic graphs , 2000, Theor. Comput. Sci..
[36] Aline Parreau,et al. Problèmes d'identification dans les graphes , 2012 .
[37] Leslie E. Trotter,et al. Line perfect graphs , 1977, Math. Program..
[38] P. Hall. On Representatives of Subsets , 1935 .
[39] David Auger,et al. Complexity results for identifying codes in planar graphs , 2010, Int. Trans. Oper. Res..
[40] R. L. Brooks. On Colouring the Nodes of a Network , 1941 .
[41] Gérard D. Cohen,et al. Discriminating codes in bipartite graphs: bounds, extremal cardinalities, complexity , 2008, Adv. Math. Commun..
[42] Miroslav Chlebík,et al. Approximation Hardness for Small Occurrence Instances of NP-Hard Problems , 2003, CIAC.
[43] Ran Raz,et al. A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP , 1997, STOC '97.
[44] F. Gavril. The intersection graphs of subtrees in tree are exactly the chordal graphs , 1974 .
[45] Luca Trevisan,et al. Inapproximability of Combinatorial Optimization Problems , 2004, Electron. Colloquium Comput. Complex..
[46] ’ Ronald Fagin,et al. - Order Spectra and Polynomial-Time Recognizable Sets , 1974 .
[47] David S. Johnson,et al. Approximation algorithms for combinatorial problems , 1973, STOC.
[48] B. Bollobás. Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability , 1986 .
[49] R. D. Skaggs. Identifying vertices in graphs and digraphs , 2009 .
[50] Craig A. Tovey,et al. A simplified NP-complete satisfiability problem , 1984, Discret. Appl. Math..
[51] Paul D. Seymour,et al. The structure of claw-free graphs , 2005, BCC.
[52] F. Bruce Shepherd,et al. Domination in graphs with minimum degree two , 1989, J. Graph Theory.
[53] Julien Moncel,et al. On graphs on n vertices having an identifying code of cardinality [log2(n+1)] , 2006, Discret. Appl. Math..
[54] Jakub Przybylo,et al. On the structure of arbitrarily partitionable graphs with given connectivity , 2014, Discret. Appl. Math..
[55] Mihalis Yannakakis,et al. The Complexity of Multiterminal Cuts , 1994, SIAM J. Comput..
[56] L. Lovász. Combinatorial problems and exercises , 1979 .
[57] David Auger. Minimal identifying codes in trees and planar graphs with large girth , 2010, Eur. J. Comb..
[58] Sylvain Gravier,et al. Hardness results and approximation algorithms for identifying codes and locating-dominating codes in graphs , 2008, Algorithmic Oper. Res..
[59] M. Jacobson,et al. n-Domination in graphs , 1985 .
[60] Richard E. Ladner,et al. On the Structure of Polynomial Time Reducibility , 1975, JACM.
[61] David S. Johnson,et al. The Rectilinear Steiner Tree Problem is NP Complete , 1977, SIAM Journal of Applied Mathematics.
[62] Changhong Lu,et al. Identifying codes and locating-dominating sets on paths and cycles , 2011, Discret. Appl. Math..
[63] S. Klavžar,et al. Graphs S(n, k) and a Variant of the Tower of Hanoi Problem , 1997 .
[64] Xiao-Dong Hu,et al. Identifying codes of cycles with odd orders , 2008, Eur. J. Comb..
[65] Philippe Gambette,et al. On Restrictions of Balanced 2-Interval Graphs , 2007, WG.
[66] David L. Roberts,et al. Locating sensors in paths and cycles: The case of 2-identifying codes , 2008, Eur. J. Comb..
[67] André Raspaud,et al. On the size of identifying codes in triangle-free graphs , 2010, Discret. Appl. Math..
[68] Nathalie Bertrand,et al. Identifying and locating-dominating codes on chains and cycles , 2004, Eur. J. Comb..
[69] Sanjeev Arora,et al. Computational Complexity: A Modern Approach , 2009 .
[70] Antoine Lobstein,et al. Minimizing the size of an identifying or locating-dominating code in a graph is NP-hard , 2003, Theor. Comput. Sci..
[71] P. Frankl,et al. Linear Algebra Methods in Combinatorics I , 1988 .
[72] Sylvain Gravier,et al. On graphs having a V\{x} set as an identifying code , 2007, Discret. Math..
[73] David Auger,et al. Edge number, minimum degree, maximum independent set, radius and diameter in twin-free graphs , 2009, Adv. Math. Commun..
[74] Mark G. Karpovsky,et al. On a New Class of Codes for Identifying Vertices in Graphs , 1998, IEEE Trans. Inf. Theory.
[75] Oleg Verbitsky,et al. How complex are random graphs in first order logic , 2005 .
[76] Nicholas C. Wormald,et al. The asymptotic distribution of short cycles in random regular graphs , 1981, J. Comb. Theory, Ser. B.
[77] Dieter Kratsch,et al. Domination and Total Domination on Asteroidal Triple-free Graphs , 2000, Discret. Appl. Math..
[78] S. Arumugam,et al. The fractional metric dimension of graphs , 2012, Discret. Math..
[79] Mihalis Yannakakis,et al. On limited nondeterminism and the complexity of the V-C dimension , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.
[80] Anders Yeo,et al. Total domination of graphs and small transversals of hypergraphs , 2007, Comb..
[81] László Lovász,et al. Normal hypergraphs and the perfect graph conjecture , 1972, Discret. Math..
[82] Tero Laihonen,et al. An improved lower bound for (1, ≤ 2)-identifying codes in the king grid , 2011, Adv. Math. Commun..
[83] Alan M. Frieze,et al. Codes identifying sets of vertices in random networks , 2007, Discret. Math..
[84] Sylvain Gravier,et al. Locally Identifying Coloring of Graphs , 2010, Electron. J. Comb..
[85] Luca Trevisan,et al. Structure in Approximation Classes , 1999, Electron. Colloquium Comput. Complex..
[86] B. Stanton. On Vertex Identifying Codes For Infinite Lattices , 2011, 1102.2643.
[87] Jianfang Wang,et al. Adjacent strong edge coloring of graphs , 2002, Appl. Math. Lett..
[88] David Auger. Induced Paths in Twin-Free Graphs , 2008, Electron. J. Comb..
[89] B. Moret,et al. On Minimizing a Set of Tests , 1985 .
[90] Azriel Rosenfeld,et al. Landmarks in Graphs , 1996, Discret. Appl. Math..
[91] Antoine Lobstein,et al. Extremal cardinalities for identifying and locating-dominating codes in graphs , 2007, Discret. Math..
[92] Sylvain Gravier,et al. A linear algorithm for minimum 1-identifying codes in oriented trees , 2006, Discret. Appl. Math..
[93] Brenda S. Baker,et al. Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).
[94] Oded Goldreich,et al. Computational complexity - a conceptual perspective , 2008 .
[95] James B. Shearer,et al. A note on the independence number of triangle-free graphs , 1983, Discret. Math..
[96] Guillem Perarnau,et al. Bounds for Identifying Codes in Terms of Degree Parameters , 2011, Electron. J. Comb..
[97] Charles J. Colbourn,et al. Unit disk graphs , 1991, Discret. Math..
[98] Iiro S. Honkala,et al. On strongly identifying codes , 2002, Discret. Math..
[99] Iiro S. Honkala,et al. Locally identifying colourings for graphs with given maximum degree , 2011, Discret. Math..
[100] Norishige Chiba,et al. A Linear Algorithm for Embedding Planar Graphs Using PQ-Trees , 1985, J. Comput. Syst. Sci..
[101] Peter J. Slater,et al. Open neighborhood locating-domination for infinite cylinders , 2011, ACM-SE '11.
[102] Johann Hurink,et al. A PTAS for the Minimum Dominating Set Problem in Unit Disk Graphs , 2005, WAOA.
[103] Gérard D. Cohen,et al. Discriminating codes in (bipartite) planar graphs , 2008, Eur. J. Comb..
[104] Simon Litsyn,et al. Exact Minimum Density of Codes Identifying Vertices in the Square Grid , 2005, SIAM J. Discret. Math..
[105] Ville Junnila. On Identifying and Locating-Dominating Codes , 2011 .
[106] Gérard D. Cohen,et al. New identifying codes in the binary Hamming space , 2010, Eur. J. Comb..
[107] Iiro S. Honkala,et al. On Codes Identifying Sets of Vertices in Hamming Spaces , 2000, Des. Codes Cryptogr..
[108] Martin Milanic,et al. Set graphs. II. Complexity of set graph recognition and similar problems , 2014, Theor. Comput. Sci..
[109] Peter J. Slater,et al. Open neighborhood locating dominating sets , 2010, Australas. J Comb..
[110] J. Edmonds. Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.
[111] Mathew D. Penrose,et al. Random Geometric Graphs , 2003 .
[112] Mikko Pelto. On Identifying and Locating-Dominating Codes in the Infinite King Grid , 2012 .
[113] Julien Moncel. Monotonicity of the minimum cardinality of an identifying code in the hypercube , 2006, Discret. Appl. Math..
[114] David Starobinski,et al. An Implementation of Indoor Location Detection Systems Based on Identifying Codes , 2004, INTELLCOMM.
[115] Reuven Cohen,et al. Joint Monitoring and Routing in Wireless Sensor Networks Using Robust Identifying Codes , 2007, 2007 Fourth International Conference on Broadband Communications, Networks and Systems (BROADNETS '07).
[116] Francesco De Pellegrini,et al. Robust location detection in emergency sensor networks , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).
[117] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..
[118] Ari Trachtenberg,et al. Identifying Codes and Covering Problems , 2008, IEEE Transactions on Information Theory.
[119] Brendan D. McKay,et al. Asymptotic enumeration by degree sequence of graphs with degreeso(n1/2) , 1991, Comb..
[120] M. Chleb ´ õk,et al. Approximation Hardness of Dominating Set Problems in Bounded Degree Graphs , 2008 .
[121] Russell Impagliazzo,et al. Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..
[122] Bruno Courcelle,et al. Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..
[123] Peter J. Slater. Domination and location in acyclic graphs , 1987, Networks.
[124] Saket Saurabh,et al. Parameterized Study of the Test Cover Problem , 2012, MFCS.
[125] Sylvain Gravier,et al. Identifying codes of cycles , 2006, Eur. J. Comb..
[126] Monika Pilsniak,et al. On the length of the longest path in partitionable balloons , 2012 .
[127] Miroslav Chlebík,et al. Approximation hardness of edge dominating set problems , 2006, J. Comb. Optim..
[128] Tero Laihonen,et al. Optimal Identifying Codes in Cycles and Paths , 2012, Graphs Comb..
[129] D. Auger. Problèmes d'identification combinatoire et puissances de graphes. (Combinatorial identification problems and graph powers) , 2010 .
[130] Stéphan Thomassé,et al. The Domination Number of Grids , 2011, SIAM J. Discret. Math..
[131] Peter J. Slater,et al. Fundamentals of domination in graphs , 1998, Pure and applied mathematics.
[132] Martin Farber,et al. Domination in Permutation Graphs , 1985, J. Algorithms.
[133] Sylvain Gravier,et al. Identifying Codes of Cartesian Product of Two Cliques of the Same Size , 2008, Electron. J. Comb..
[134] Juraj Hromkovic,et al. Algorithmics for hard problems - introduction to combinatorial optimization, randomization, approximation, and heuristics , 2001 .
[135] Gérard D. Cohen,et al. On identifying codes , 1999, Codes and Association Schemes.
[136] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[137] Erik D. Demaine,et al. Graphs excluding a fixed minor have grids as large as treewidth, with combinatorial and algorithmic applications through bidimensionality , 2005, SODA '05.
[138] Iiro S. Honkala,et al. General Bounds for Identifying Codes in Some Infinite Regular Graphs , 2001, Electron. J. Comb..
[139] Gary Chartrand,et al. Resolvability in graphs and the metric dimension of a graph , 2000, Discret. Appl. Math..
[140] Julien Moncel. Codes Identifiants dans les Graphes. (Identifying Codes in Graphs) , 2005 .
[141] Bruno Courcelle,et al. Monadic Second-Order Evaluations on Tree-Decomposable Graphs , 1993, Theor. Comput. Sci..
[142] R. Halin. S-functions for graphs , 1976 .
[143] Iiro S. Honkala,et al. On the complexity of the identification problem in Hamming spaces , 2002, Acta Informatica.
[144] Iiro S. Honkala,et al. On Identifying Codes in Binary Hamming Spaces , 2002, J. Comb. Theory, Ser. A.
[145] Mihalis Yannakakis,et al. Edge Dominating Sets in Graphs , 1980 .
[146] Petru Valicov,et al. On packing, colouring and identification problems. (Problèmes de placement, de coloration et d'identification) , 2012 .
[147] N. Duncan. Leaves on trees , 2014 .
[148] T. Berger-Wolf,et al. Identifying Codes and the Set Cover Problem , 2006 .
[149] Alexandr V. Kostochka,et al. Lower bound of the hadwiger number of graphs by their average degree , 1984, Comb..
[150] Andrew Thomason,et al. The Extremal Function for Complete Minors , 2001, J. Comb. Theory B.
[151] Antoine Lobstein,et al. Identifying and locating-dominating codes: NP-Completeness results for directed graphs , 2002, IEEE Trans. Inf. Theory.
[152] Udi Rotics,et al. On the Clique-Width of Some Perfect Graph Classes , 2000, Int. J. Found. Comput. Sci..
[153] P. Erdos-L Lovász. Problems and Results on 3-chromatic Hypergraphs and Some Related Questions , 2022 .
[154] B. Reed. Graph Colouring and the Probabilistic Method , 2001 .
[155] R. Ravi,et al. Approximation algorithms for the test cover problem , 2003, Math. Program..
[156] Erik Jan van Leeuwen,et al. On the Complexity of Metric Dimension , 2011, ESA.
[157] Simon Litsyn,et al. Cycles identifying vertices and edges in binary hypercubes and 2-dimensional tori , 2003, Discret. Appl. Math..
[158] S. Hedetniemi,et al. Domination in graphs : advanced topics , 1998 .
[159] Mihalis Yannakakis,et al. Optimization, approximation, and complexity classes , 1991, STOC '88.
[160] Tero Laihonen,et al. Optimal identification of sets of edges using 2-factors , 2013, Discret. Math..
[161] L. Lovász. Graph minor theory , 2005 .
[162] Nathalie Bertrand,et al. 1-identifying Codes on Trees , 2005, Australas. J Comb..
[163] H. Sachs,et al. Regukre Graphen gegebener Taillenweite mit minimaler Knotenzahl , 1963 .
[164] Iiro S. Honkala. On r-locating-dominating sets in paths , 2009, Eur. J. Comb..
[165] Kellogg S. Booth,et al. Dominating Sets in Chordal Graphs , 1982, SIAM J. Comput..
[166] Harry B. Hunt,et al. NC-Approximation Schemes for NP- and PSPACE-Hard Problems for Geometric Graphs , 1998, J. Algorithms.
[167] Iiro S. Honkala,et al. Structural Properties of Twin-Free Graphs , 2007, Electron. J. Comb..
[168] G. Nemhauser,et al. The k-Domination and k-Stability Problems on Sun-Free Chordal Graphs , 1984 .
[169] Matjaz Kovse,et al. On Graph Identification Problems and the Special Case of Identifying Vertices Using Paths , 2012, IWOCA.
[170] P. Seymour,et al. The Strong Perfect Graph Theorem , 2002, math/0212070.
[171] P. Seymour,et al. Excluding induced subgraphs , 2006 .
[172] Martin Farber,et al. Domination, independent domination, and duality in strongly chordal graphs , 1984, Discret. Appl. Math..