Combinatorial and algorithmic aspects of identifying codes in graphs. (Aspects combinatoires et algorithmiques des codes identifiants dans les graphes)

Un code identifiant est un ensemble de sommets d'un graphe tel que, d'une part, chaque sommet hors du code a un voisin dans le code (propriete de domination) et, d'autre part, tous les sommets ont un voisinage distinct a l'interieur du code (propriete de separation). Dans cette these, nous nous interessons a des aspects combinatoires et algorithmiques relatifs aux codes identifiants.Pour la partie combinatoire, nous etudions tout d'abord des questions extremales en donnant une caracterisation complete des graphes non-orientes finis ayant comme taille minimum de code identifiant leur ordre moins un. Nous caracterisons egalement les graphes diriges finis, les graphes non-orientes infinis et les graphes orientes infinis ayant pour seul code identifiant leur ensemble de sommets. Ces resultats repondent a des questions ouvertes precedemment etudiees dans la litterature.Puis, nous etudions la relation entre la taille minimum d'un code identifiant et le degre maximum d'un graphe, en particulier en donnant divers majorants pour ce parametre en fonction de l'ordre et du degre maximum. Ces majorants sont obtenus via deux techniques. L'une est basee sur la construction d'ensembles independants satisfaisant certaines proprietes, et l'autre utilise la combinaison de deux outils de la methode probabiliste : le lemme local de Lovasz et une borne de Chernoff. Nous donnons egalement des constructions de familles de graphes en relation avec ce type de majorants, et nous conjecturons que ces constructions sont optimales a une constante additive pres.Nous presentons egalement de nouveaux minorants et majorants pour la cardinalite minimum d'un code identifiant dans des classes de graphes particulieres. Nous etudions les graphes de maille au moins 5 et de degre minimum donne en montrant que la combinaison de ces deux parametres influe fortement sur la taille minimum d'un code identifiant. Nous appliquons ensuite ces resultats aux graphes reguliers aleatoires. Puis, nous donnons des minorants pour la taille d'un code identifiant des graphes d'intervalles et des graphes d'intervalles unitaires. Enfin, nous donnons divers minorants et majorants pour cette quantite lorsque l'on se restreint aux graphes adjoints. Cette derniere question est abordee via la notion nouvelle de codes arete-identifiants.Pour la partie algorithmique, il est connu que le probleme de decision associes a la notion de code identifiant est NP-complet meme pour des classes de graphes restreintes. Nous etendons ces resultats a d'autres classes de graphes telles que celles des graphes split, des co-bipartis, des adjoints ou d'intervalles. Pour cela nous proposons des reductions polynomiales depuis divers problemes algorithmiques classiques. Ces resultats montrent que dans beaucoup de classes de graphes, le probleme des codes identifiants est algorithmiquement plus difficile que des problems lies (tel que le probleme des ensembles dominants).Par ailleurs, nous completons les connaissances relatives a l'approximabilite du probleme d'optimisation associe aux codes identifiants. Nous etendons le resultat connu de NP-difficulte pour l'approximation de ce probleme avec un facteur sous-logarithmique (en fonction de la taille du graphe instance) aux graphes bipartis, split et co-bipartis, respectivement. Nous etendons egalement le resultat connu d'APX-completude pour les graphes de degre maximum donne a une sous-classe des graphes split, aux graphes bipartis de degre maximum 4 et aux graphes adjoints. Enfin, nous montrons l'existence d'un algorithme de type PTAS pour les graphes d'intervalles unitaires.

[1]  Gregory Gutin,et al.  Digraphs - theory, algorithms and applications , 2002 .

[2]  Petri Rosendahl On the Identification of Vertices Using Cycles , 2003, Electron. J. Comb..

[3]  Bojan Mohar,et al.  Crossing numbers of Sierpiński‐like graphs , 2005, J. Graph Theory.

[4]  N. Alon,et al.  The Probabilistic Method: Alon/Probabilistic , 2008 .

[5]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[6]  Gregory Gutin,et al.  Parameterizations of Test Cover with Bounded Test Sizes , 2014, Algorithmica.

[7]  K. Wagner Über eine Eigenschaft der ebenen Komplexe , 1937 .

[8]  José Cáceres,et al.  Locating dominating codes: Bounds and extremal cardinalities , 2012, Appl. Math. Comput..

[9]  L. Lovász,et al.  Polynomial Algorithms for Perfect Graphs , 1984 .

[10]  Alan A. Bertossi,et al.  Dominating Sets for Split and Bipartite Graphs , 1984, Inf. Process. Lett..

[11]  Jean-Sébastien Sereni,et al.  Identifying and Locating-Dominating Codes in (Random) Geometric Networks , 2009, Comb. Probab. Comput..

[12]  Sepp Hartung,et al.  On the Parameterized and Approximation Hardness of Metric Dimension , 2012, 2013 IEEE Conference on Computational Complexity.

[13]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[14]  Mathias Hauptmann,et al.  Approximation complexity of Metric Dimension problem , 2012, J. Discrete Algorithms.

[15]  Gérard D. Cohen,et al.  On Codes Identifying Vertices in the Two-Dimensional Square Lattice with Diagonals , 2001, IEEE Trans. Computers.

[16]  Andreas J. Winter Another Algebraic Proof of Bondy's Theorem on Induced Subsets , 2000, J. Comb. Theory, Ser. A.

[17]  David P. Sumner Point determination in graphs , 1973, Discret. Math..

[18]  Rajeev Motwani,et al.  On syntactic versus computational views of approximability , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[19]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[20]  Bruce A. Reed Paths, Stars and the Number Three , 1996, Comb. Probab. Comput..

[21]  David Auger,et al.  On the existence of a cycle of length at least 7 in a (1, \le 2)-twin-free graph , 2010, Discuss. Math. Graph Theory.

[22]  Douglas B. West,et al.  The interval number of a planar graph: Three intervals suffice , 1983, J. Comb. Theory, Ser. B.

[23]  Paul D. Seymour,et al.  Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.

[24]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.

[25]  László Babai,et al.  On the Complexity of Canonical Labeling of Strongly Regular Graphs , 1980, SIAM J. Comput..

[26]  Peter Damaschke,et al.  Domination in Convex and Chordal Bipartite Graphs , 1990, Inf. Process. Lett..

[27]  L. Beineke Characterizations of derived graphs , 1970 .

[28]  Jukka Suomela,et al.  Approximability of identifying codes and locating-dominating codes , 2007, Inf. Process. Lett..

[29]  Eleonora Guerrini,et al.  Extremal graphs for the identifying code problem , 2011, Eur. J. Comb..

[30]  Teresa W. Haynes,et al.  A quantitative analysis of secondary RNA structure using domination based parameters on trees , 2006, BMC Bioinformatics.

[31]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique Width , 1998, WG.

[32]  Sanna M. Ranto,et al.  Identifying and Locating- Dominating Codes in Binary Hamming Spaces , 2007 .

[33]  Michael A. Henning,et al.  Distinguishing-Transversal in Hypergraphs and Identifying Open Codes in Cubic Graphs , 2014, Graphs Comb..

[34]  Paul D. Seymour,et al.  Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.

[35]  Viggo Kann,et al.  Some APX-completeness results for cubic graphs , 2000, Theor. Comput. Sci..

[36]  Aline Parreau,et al.  Problèmes d'identification dans les graphes , 2012 .

[37]  Leslie E. Trotter,et al.  Line perfect graphs , 1977, Math. Program..

[38]  P. Hall On Representatives of Subsets , 1935 .

[39]  David Auger,et al.  Complexity results for identifying codes in planar graphs , 2010, Int. Trans. Oper. Res..

[40]  R. L. Brooks On Colouring the Nodes of a Network , 1941 .

[41]  Gérard D. Cohen,et al.  Discriminating codes in bipartite graphs: bounds, extremal cardinalities, complexity , 2008, Adv. Math. Commun..

[42]  Miroslav Chlebík,et al.  Approximation Hardness for Small Occurrence Instances of NP-Hard Problems , 2003, CIAC.

[43]  Ran Raz,et al.  A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP , 1997, STOC '97.

[44]  F. Gavril The intersection graphs of subtrees in tree are exactly the chordal graphs , 1974 .

[45]  Luca Trevisan,et al.  Inapproximability of Combinatorial Optimization Problems , 2004, Electron. Colloquium Comput. Complex..

[46]  ’ Ronald Fagin,et al.  - Order Spectra and Polynomial-Time Recognizable Sets , 1974 .

[47]  David S. Johnson,et al.  Approximation algorithms for combinatorial problems , 1973, STOC.

[48]  B. Bollobás Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability , 1986 .

[49]  R. D. Skaggs Identifying vertices in graphs and digraphs , 2009 .

[50]  Craig A. Tovey,et al.  A simplified NP-complete satisfiability problem , 1984, Discret. Appl. Math..

[51]  Paul D. Seymour,et al.  The structure of claw-free graphs , 2005, BCC.

[52]  F. Bruce Shepherd,et al.  Domination in graphs with minimum degree two , 1989, J. Graph Theory.

[53]  Julien Moncel,et al.  On graphs on n vertices having an identifying code of cardinality [log2(n+1)] , 2006, Discret. Appl. Math..

[54]  Jakub Przybylo,et al.  On the structure of arbitrarily partitionable graphs with given connectivity , 2014, Discret. Appl. Math..

[55]  Mihalis Yannakakis,et al.  The Complexity of Multiterminal Cuts , 1994, SIAM J. Comput..

[56]  L. Lovász Combinatorial problems and exercises , 1979 .

[57]  David Auger Minimal identifying codes in trees and planar graphs with large girth , 2010, Eur. J. Comb..

[58]  Sylvain Gravier,et al.  Hardness results and approximation algorithms for identifying codes and locating-dominating codes in graphs , 2008, Algorithmic Oper. Res..

[59]  M. Jacobson,et al.  n-Domination in graphs , 1985 .

[60]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[61]  David S. Johnson,et al.  The Rectilinear Steiner Tree Problem is NP Complete , 1977, SIAM Journal of Applied Mathematics.

[62]  Changhong Lu,et al.  Identifying codes and locating-dominating sets on paths and cycles , 2011, Discret. Appl. Math..

[63]  S. Klavžar,et al.  Graphs S(n, k) and a Variant of the Tower of Hanoi Problem , 1997 .

[64]  Xiao-Dong Hu,et al.  Identifying codes of cycles with odd orders , 2008, Eur. J. Comb..

[65]  Philippe Gambette,et al.  On Restrictions of Balanced 2-Interval Graphs , 2007, WG.

[66]  David L. Roberts,et al.  Locating sensors in paths and cycles: The case of 2-identifying codes , 2008, Eur. J. Comb..

[67]  André Raspaud,et al.  On the size of identifying codes in triangle-free graphs , 2010, Discret. Appl. Math..

[68]  Nathalie Bertrand,et al.  Identifying and locating-dominating codes on chains and cycles , 2004, Eur. J. Comb..

[69]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[70]  Antoine Lobstein,et al.  Minimizing the size of an identifying or locating-dominating code in a graph is NP-hard , 2003, Theor. Comput. Sci..

[71]  P. Frankl,et al.  Linear Algebra Methods in Combinatorics I , 1988 .

[72]  Sylvain Gravier,et al.  On graphs having a V\{x} set as an identifying code , 2007, Discret. Math..

[73]  David Auger,et al.  Edge number, minimum degree, maximum independent set, radius and diameter in twin-free graphs , 2009, Adv. Math. Commun..

[74]  Mark G. Karpovsky,et al.  On a New Class of Codes for Identifying Vertices in Graphs , 1998, IEEE Trans. Inf. Theory.

[75]  Oleg Verbitsky,et al.  How complex are random graphs in first order logic , 2005 .

[76]  Nicholas C. Wormald,et al.  The asymptotic distribution of short cycles in random regular graphs , 1981, J. Comb. Theory, Ser. B.

[77]  Dieter Kratsch,et al.  Domination and Total Domination on Asteroidal Triple-free Graphs , 2000, Discret. Appl. Math..

[78]  S. Arumugam,et al.  The fractional metric dimension of graphs , 2012, Discret. Math..

[79]  Mihalis Yannakakis,et al.  On limited nondeterminism and the complexity of the V-C dimension , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[80]  Anders Yeo,et al.  Total domination of graphs and small transversals of hypergraphs , 2007, Comb..

[81]  László Lovász,et al.  Normal hypergraphs and the perfect graph conjecture , 1972, Discret. Math..

[82]  Tero Laihonen,et al.  An improved lower bound for (1, ≤ 2)-identifying codes in the king grid , 2011, Adv. Math. Commun..

[83]  Alan M. Frieze,et al.  Codes identifying sets of vertices in random networks , 2007, Discret. Math..

[84]  Sylvain Gravier,et al.  Locally Identifying Coloring of Graphs , 2010, Electron. J. Comb..

[85]  Luca Trevisan,et al.  Structure in Approximation Classes , 1999, Electron. Colloquium Comput. Complex..

[86]  B. Stanton On Vertex Identifying Codes For Infinite Lattices , 2011, 1102.2643.

[87]  Jianfang Wang,et al.  Adjacent strong edge coloring of graphs , 2002, Appl. Math. Lett..

[88]  David Auger Induced Paths in Twin-Free Graphs , 2008, Electron. J. Comb..

[89]  B. Moret,et al.  On Minimizing a Set of Tests , 1985 .

[90]  Azriel Rosenfeld,et al.  Landmarks in Graphs , 1996, Discret. Appl. Math..

[91]  Antoine Lobstein,et al.  Extremal cardinalities for identifying and locating-dominating codes in graphs , 2007, Discret. Math..

[92]  Sylvain Gravier,et al.  A linear algorithm for minimum 1-identifying codes in oriented trees , 2006, Discret. Appl. Math..

[93]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[94]  Oded Goldreich,et al.  Computational complexity - a conceptual perspective , 2008 .

[95]  James B. Shearer,et al.  A note on the independence number of triangle-free graphs , 1983, Discret. Math..

[96]  Guillem Perarnau,et al.  Bounds for Identifying Codes in Terms of Degree Parameters , 2011, Electron. J. Comb..

[97]  Charles J. Colbourn,et al.  Unit disk graphs , 1991, Discret. Math..

[98]  Iiro S. Honkala,et al.  On strongly identifying codes , 2002, Discret. Math..

[99]  Iiro S. Honkala,et al.  Locally identifying colourings for graphs with given maximum degree , 2011, Discret. Math..

[100]  Norishige Chiba,et al.  A Linear Algorithm for Embedding Planar Graphs Using PQ-Trees , 1985, J. Comput. Syst. Sci..

[101]  Peter J. Slater,et al.  Open neighborhood locating-domination for infinite cylinders , 2011, ACM-SE '11.

[102]  Johann Hurink,et al.  A PTAS for the Minimum Dominating Set Problem in Unit Disk Graphs , 2005, WAOA.

[103]  Gérard D. Cohen,et al.  Discriminating codes in (bipartite) planar graphs , 2008, Eur. J. Comb..

[104]  Simon Litsyn,et al.  Exact Minimum Density of Codes Identifying Vertices in the Square Grid , 2005, SIAM J. Discret. Math..

[105]  Ville Junnila On Identifying and Locating-Dominating Codes , 2011 .

[106]  Gérard D. Cohen,et al.  New identifying codes in the binary Hamming space , 2010, Eur. J. Comb..

[107]  Iiro S. Honkala,et al.  On Codes Identifying Sets of Vertices in Hamming Spaces , 2000, Des. Codes Cryptogr..

[108]  Martin Milanic,et al.  Set graphs. II. Complexity of set graph recognition and similar problems , 2014, Theor. Comput. Sci..

[109]  Peter J. Slater,et al.  Open neighborhood locating dominating sets , 2010, Australas. J Comb..

[110]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[111]  Mathew D. Penrose,et al.  Random Geometric Graphs , 2003 .

[112]  Mikko Pelto On Identifying and Locating-Dominating Codes in the Infinite King Grid , 2012 .

[113]  Julien Moncel Monotonicity of the minimum cardinality of an identifying code in the hypercube , 2006, Discret. Appl. Math..

[114]  David Starobinski,et al.  An Implementation of Indoor Location Detection Systems Based on Identifying Codes , 2004, INTELLCOMM.

[115]  Reuven Cohen,et al.  Joint Monitoring and Routing in Wireless Sensor Networks Using Robust Identifying Codes , 2007, 2007 Fourth International Conference on Broadband Communications, Networks and Systems (BROADNETS '07).

[116]  Francesco De Pellegrini,et al.  Robust location detection in emergency sensor networks , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[117]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[118]  Ari Trachtenberg,et al.  Identifying Codes and Covering Problems , 2008, IEEE Transactions on Information Theory.

[119]  Brendan D. McKay,et al.  Asymptotic enumeration by degree sequence of graphs with degreeso(n1/2) , 1991, Comb..

[120]  M. Chleb ´ õk,et al.  Approximation Hardness of Dominating Set Problems in Bounded Degree Graphs , 2008 .

[121]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[122]  Bruno Courcelle,et al.  Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..

[123]  Peter J. Slater Domination and location in acyclic graphs , 1987, Networks.

[124]  Saket Saurabh,et al.  Parameterized Study of the Test Cover Problem , 2012, MFCS.

[125]  Sylvain Gravier,et al.  Identifying codes of cycles , 2006, Eur. J. Comb..

[126]  Monika Pilsniak,et al.  On the length of the longest path in partitionable balloons , 2012 .

[127]  Miroslav Chlebík,et al.  Approximation hardness of edge dominating set problems , 2006, J. Comb. Optim..

[128]  Tero Laihonen,et al.  Optimal Identifying Codes in Cycles and Paths , 2012, Graphs Comb..

[129]  D. Auger Problèmes d'identification combinatoire et puissances de graphes. (Combinatorial identification problems and graph powers) , 2010 .

[130]  Stéphan Thomassé,et al.  The Domination Number of Grids , 2011, SIAM J. Discret. Math..

[131]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[132]  Martin Farber,et al.  Domination in Permutation Graphs , 1985, J. Algorithms.

[133]  Sylvain Gravier,et al.  Identifying Codes of Cartesian Product of Two Cliques of the Same Size , 2008, Electron. J. Comb..

[134]  Juraj Hromkovic,et al.  Algorithmics for hard problems - introduction to combinatorial optimization, randomization, approximation, and heuristics , 2001 .

[135]  Gérard D. Cohen,et al.  On identifying codes , 1999, Codes and Association Schemes.

[136]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[137]  Erik D. Demaine,et al.  Graphs excluding a fixed minor have grids as large as treewidth, with combinatorial and algorithmic applications through bidimensionality , 2005, SODA '05.

[138]  Iiro S. Honkala,et al.  General Bounds for Identifying Codes in Some Infinite Regular Graphs , 2001, Electron. J. Comb..

[139]  Gary Chartrand,et al.  Resolvability in graphs and the metric dimension of a graph , 2000, Discret. Appl. Math..

[140]  Julien Moncel Codes Identifiants dans les Graphes. (Identifying Codes in Graphs) , 2005 .

[141]  Bruno Courcelle,et al.  Monadic Second-Order Evaluations on Tree-Decomposable Graphs , 1993, Theor. Comput. Sci..

[142]  R. Halin S-functions for graphs , 1976 .

[143]  Iiro S. Honkala,et al.  On the complexity of the identification problem in Hamming spaces , 2002, Acta Informatica.

[144]  Iiro S. Honkala,et al.  On Identifying Codes in Binary Hamming Spaces , 2002, J. Comb. Theory, Ser. A.

[145]  Mihalis Yannakakis,et al.  Edge Dominating Sets in Graphs , 1980 .

[146]  Petru Valicov,et al.  On packing, colouring and identification problems. (Problèmes de placement, de coloration et d'identification) , 2012 .

[147]  N. Duncan Leaves on trees , 2014 .

[148]  T. Berger-Wolf,et al.  Identifying Codes and the Set Cover Problem , 2006 .

[149]  Alexandr V. Kostochka,et al.  Lower bound of the hadwiger number of graphs by their average degree , 1984, Comb..

[150]  Andrew Thomason,et al.  The Extremal Function for Complete Minors , 2001, J. Comb. Theory B.

[151]  Antoine Lobstein,et al.  Identifying and locating-dominating codes: NP-Completeness results for directed graphs , 2002, IEEE Trans. Inf. Theory.

[152]  Udi Rotics,et al.  On the Clique-Width of Some Perfect Graph Classes , 2000, Int. J. Found. Comput. Sci..

[153]  P. Erdos-L Lovász Problems and Results on 3-chromatic Hypergraphs and Some Related Questions , 2022 .

[154]  B. Reed Graph Colouring and the Probabilistic Method , 2001 .

[155]  R. Ravi,et al.  Approximation algorithms for the test cover problem , 2003, Math. Program..

[156]  Erik Jan van Leeuwen,et al.  On the Complexity of Metric Dimension , 2011, ESA.

[157]  Simon Litsyn,et al.  Cycles identifying vertices and edges in binary hypercubes and 2-dimensional tori , 2003, Discret. Appl. Math..

[158]  S. Hedetniemi,et al.  Domination in graphs : advanced topics , 1998 .

[159]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[160]  Tero Laihonen,et al.  Optimal identification of sets of edges using 2-factors , 2013, Discret. Math..

[161]  L. Lovász Graph minor theory , 2005 .

[162]  Nathalie Bertrand,et al.  1-identifying Codes on Trees , 2005, Australas. J Comb..

[163]  H. Sachs,et al.  Regukre Graphen gegebener Taillenweite mit minimaler Knotenzahl , 1963 .

[164]  Iiro S. Honkala On r-locating-dominating sets in paths , 2009, Eur. J. Comb..

[165]  Kellogg S. Booth,et al.  Dominating Sets in Chordal Graphs , 1982, SIAM J. Comput..

[166]  Harry B. Hunt,et al.  NC-Approximation Schemes for NP- and PSPACE-Hard Problems for Geometric Graphs , 1998, J. Algorithms.

[167]  Iiro S. Honkala,et al.  Structural Properties of Twin-Free Graphs , 2007, Electron. J. Comb..

[168]  G. Nemhauser,et al.  The k-Domination and k-Stability Problems on Sun-Free Chordal Graphs , 1984 .

[169]  Matjaz Kovse,et al.  On Graph Identification Problems and the Special Case of Identifying Vertices Using Paths , 2012, IWOCA.

[170]  P. Seymour,et al.  The Strong Perfect Graph Theorem , 2002, math/0212070.

[171]  P. Seymour,et al.  Excluding induced subgraphs , 2006 .

[172]  Martin Farber,et al.  Domination, independent domination, and duality in strongly chordal graphs , 1984, Discret. Appl. Math..