Multi-modal Semantic Place Classification

The ability to represent knowledge about space and its position therein is crucial for a mobile robot. To this end, topological and semantic descriptions are gaining popularity for augmenting purely metric space representations. In this paper we present a multi-modal place classification system that allows a mobile robot to identify places and recognize semantic categories in an indoor environment. The system effectively utilizes information from different robotic sensors by fusing multiple visual cues and laser range data. This is achieved using a high-level cue integration scheme based on a Support Vector Machine (SVM) that learns how to optimally combine and weight each cue. Our multi-modal place classification approach can be used to obtain a real-time semantic space labeling system which integrates information over time and space. We perform an extensive experimental evaluation of the method for two different platforms and environments, on a realistic off-line database and in a live experiment on an autonomous robot. The results clearly demonstrate the effectiveness of our cue integration scheme and its value for robust place classification under varying conditions.

[1]  Francesca Odone,et al.  Histogram intersection kernel for image classification , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[2]  Jiri Matas,et al.  On representation and matching of multi-coloured objects , 1995, Proceedings of IEEE International Conference on Computer Vision.

[3]  Andreas Zell,et al.  A hybrid approach for vision-based outdoor robot localization using global and local image features , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Laurent Itti,et al.  Biologically-inspired robotics vision monte-carlo localization in the outdoor environment , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[6]  Barbara Caputo,et al.  Recognition with local features: the kernel recipe , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[7]  Barbara Caputo,et al.  Confidence-based cue integration for visual place recognition , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Wolfram Burgard,et al.  Supervised Learning of Places from Range Data using AdaBoost , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[9]  Alessandro Saffiotti,et al.  A virtual sensor for room detection , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Wolfram Burgard,et al.  Semantic Place Classification of Indoor Environments with Mobile Robots Using Boosting , 2005, AAAI.

[11]  Wolfram Burgard,et al.  Conceptual spatial representations for indoor mobile robots , 2008, Robotics Auton. Syst..

[12]  Barbara Caputo,et al.  Incremental learning for place recognition in dynamic environments , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Illah R. Nourbakhsh,et al.  Appearance-based place recognition for topological localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[14]  Patrick Haffner,et al.  Support vector machines for histogram-based image classification , 1999, IEEE Trans. Neural Networks.

[15]  Francesco Orabona,et al.  Indoor Place Recognition using Online Independent Support Vector Machines , 2007, BMVC.

[16]  Roland Siegwart,et al.  Incremental robot mapping with fingerprints of places , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  Brian Yamauchi,et al.  A frontier-based approach for autonomous exploration , 1997, Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA'97. 'Towards New Computational Principles for Robotics and Automation'.

[18]  Benjamin Kuipers,et al.  Bootstrap learning for place recognition , 2002, AAAI/IAAI.

[19]  Barbara Caputo,et al.  How to Combine Color and Shape Information for 3D Object Recognition: Kernels do the Trick , 2002, NIPS.

[20]  Henrik I. Christensen,et al.  Topological Modelling for Human Augmented Mapping , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Barbara Caputo,et al.  Visual Servoing to Help Camera Operators Track Better , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Ana Cristina Murillo,et al.  SURF features for efficient robot localization with omnidirectional images , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[23]  José Santos-Victor,et al.  Vision-based navigation and environmental representations with an omnidirectional camera , 2000, IEEE Trans. Robotics Autom..

[24]  James J. Clark,et al.  Data Fusion for Sensory Information Processing Systems , 1990 .

[25]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[26]  Barbara Caputo,et al.  Discriminative cue integration for medical image annotation , 2008, Pattern Recognit. Lett..

[27]  Tom Duckett,et al.  Localization for Mobile Robots using Panoramic Vision, Local Features and Particle Filter , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[28]  Cordelia Schmid,et al.  3D Object Modeling and Recognition Using Local Affine-Invariant Image Descriptors and Multi-View Spatial Constraints , 2006, International Journal of Computer Vision.

[29]  Barbara Caputo,et al.  Cue integration through discriminative accumulation , 2004, CVPR 2004.

[30]  Wolfram Burgard,et al.  Speeding-up multi-robot exploration by considering semantic place information , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[31]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[32]  Wolfram Burgard,et al.  Efficiently Learning Metric and Topological Maps with Autonomous Service Robots (Effizientes Lernen metrischer und topologischer Karten mit autonomen Servicerobotern) , 2007, it Inf. Technol..

[33]  Antonio Torralba,et al.  Contextual Priming for Object Detection , 2003, International Journal of Computer Vision.

[34]  Jochen Triesch,et al.  Object Recognition with Multiple Feature Types , 1998 .

[35]  Wolfram Burgard,et al.  An Integrated Robotic System for Spatial Understanding and Situated Interaction in Indoor Environments , 2007, AAAI.

[36]  Andreas Zell,et al.  Vision based Localization of Mobile Robots using Kernel approaches , 2005 .

[37]  Emanuele Menegatti,et al.  Image-based Monte Carlo localisation with omnidirectional images , 2004, Robotics Auton. Syst..

[38]  John Y. Aloimonos,et al.  Unification and integration of visual modules: an extension of the Marr Paradigm , 1989 .

[39]  Dieter Fox,et al.  A Spatio-Temporal Probabilistic Model for Multi-Sensor Multi-Class Object Recognition , 2007, ISRR.

[40]  Ben J. A. Kröse,et al.  Hierarchical map building using visual landmarks and geometric constraints , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[41]  Achim J. Lilienthal,et al.  Incremental spectral clustering and seasons: Appearance-based localization in outdoor environments , 2008, 2008 IEEE International Conference on Robotics and Automation.

[42]  David M. Bradley,et al.  Real-time image-based topological localization in large outdoor environments , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[43]  Henrik I. Christensen,et al.  Behaviour Coordination in Structured Environments , 2022 .

[44]  Cipriano Galindo,et al.  Multi-hierarchical semantic maps for mobile robotics , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[45]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[46]  Antonio Torralba,et al.  Recognizing indoor scenes , 2009, CVPR.

[47]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[48]  James J. Little,et al.  Vision-based mobile robot localization and mapping using scale-invariant features , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[49]  Tony Lindeberg,et al.  Object recognition using composed receptive field histograms of higher dimensionality , 2004, ICPR 2004.

[50]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[51]  Paul Newman,et al.  Describing Composite Urban Workspaces , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[52]  Friedrich Fraundorfer,et al.  Topological mapping, localization and navigation using image collections , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[53]  David G. Stork,et al.  Pattern Classification , 1973 .

[54]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[55]  Peter K. Allen,et al.  Topological mobile robot localization using fast vision techniques , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[56]  David Filliat,et al.  A visual bag of words method for interactive qualitative localization and mapping , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[57]  Benjamin Kuipers,et al.  An Intellectual History of the Spatial Semantic Hierarchy , 2008, Robotics and Cognitive Approaches to Spatial Mapping.

[58]  Barbara Caputo,et al.  SVM-based discriminative accumulation scheme for place recognition , 2008, 2008 IEEE International Conference on Robotics and Automation.

[59]  Antonio Torralba,et al.  Context-based vision system for place and object recognition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[60]  R. Polikar,et al.  Ensemble based systems in decision making , 2006, IEEE Circuits and Systems Magazine.

[61]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[62]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[63]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[64]  Wolfram Burgard,et al.  Supervised semantic labeling of places using information extracted from sensor data , 2007, Robotics Auton. Syst..