Computed Current Control of Robots

Abstract This paper presents a direct calculation of the motor current references as function of a desired trajectory specified by the joint positions, velocities and accelerations. Classically this operation is done by calculating at first the joint torques or forces, then using the joint drive gain, the current reference of motor is obtained. The proposed method defines a new set of dynamic model parameters which can be identified using the current of the motors and the joint positions and velocities, the calculation of the gear ratio, amplifier gains and motor torque constants which define the drive gain are not needed.

[1]  C. Presse,et al.  Bayesian estimation of inertial parameters of robots , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[2]  Christopher G. Atkeson,et al.  Estimation of Inertial Parameters of Manipulator Loads and Links , 1986 .

[3]  Michael W. Walker,et al.  Basis sets for manipulator inertial parameters , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[4]  M. Gautier Numerical calculation of the base inertial parameters of robots , 1991, J. Field Robotics.

[5]  George A. Bekey,et al.  Identification of robot dynamics , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[6]  Brian Armstrong,et al.  On Finding Exciting Trajectories for Identification Experiments Involving Systems with Nonlinear Dynamics , 1989, Int. J. Robotics Res..

[7]  J. Y. S. Luh,et al.  On-Line Computational Scheme for Mechanical Manipulators , 1980 .

[8]  Wisama Khalil,et al.  Minimum operations and minimum parameters of the dynamic models of tree structure robots , 1987, IEEE Journal on Robotics and Automation.

[9]  M. Gautier Optimal motion planning for robot's inertial parameters identification , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[10]  C. C. Wit,et al.  Parameters Identification of Robots Manipulators via Sequential Hybrid Estimation Algorithms , 1990 .

[11]  Wisama Khalil,et al.  Direct calculation of minimum set of inertial parameters of serial robots , 1990, IEEE Trans. Robotics Autom..

[12]  M. Gautier,et al.  Exciting Trajectories for the Identification of Base Inertial Parameters of Robots , 1992 .

[13]  Georges Bastin,et al.  Identification of the barycentric parameters of robot manipulators from external measurements , 1992, Autom..

[14]  Graham C. Goodwin,et al.  Adaptive computed torque control for rigid link manipulators , 1986, 1986 25th IEEE Conference on Decision and Control.

[15]  Koichi Osuka,et al.  A New Identification Method for Serial Manipulator Arms , 1984 .

[16]  Wisama Khalil,et al.  A new geometric notation for open and closed-loop robots , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[17]  Takeo Kanade,et al.  Parameter identification of robot dynamics , 1985, 1985 24th IEEE Conference on Decision and Control.