Generalized Tensor-Based Morphometry of HIV / AIDS Using Multivariate Statistics on Strain Matrices

This paper investigates the performance of a new multivariate method for Tensor-Based Morphometry (TBM). Statistics on Riemannian manifolds are developed that expl oit the full information in deformation tensor fields. In TBM, multi ple brain images are warped to a common neuroanatomical templat e via 3D nonlinear registration; the resulting deformation fields are analyzed statistically to identify group differences in anatomy. Rather than analyze the Jacobian determinant (volume expan sion factor) of these deformations, as is common, we retain the fu ll strain tensor and apply a manifold version of Hotelling’s T 2 test to the strain matrices, in a log-Euclidean domain. In 2D and 3D MRI data from 26 HIV/AIDS patients and 14 matched healthy subjects, we compared multivariate tensor analysiversus univariate tests of simpler tensor-derived indices: the Ja cobian determinant, the trace, geodesic anisotropy, and eigenval ues of the strain tensor, and the angle of rotation of its eigenvect ors. We detected consistent, but more extensive patterns of stru ctural abnormalities, with multivariate tests on the full tensor manifold. Their improved power was established by analyzing cumulati ve p-value plots using false discovery rate (FDR) methods, appr opriately controlling for false positives. This increased detection sensitivity may empower drug trials and large-scale studie s of disease that use tensor-morphometry.

[1]  Paul M. Thompson,et al.  3D pattern of brain abnormalities in Fragile X syndrome visualized using tensor-based morphometry , 2007, NeuroImage.

[2]  Paul M. Thompson,et al.  3 D pattern of brain atrophy in HIV / AIDS visualized using tensor-based morphometry , 2006 .

[3]  Paul M. Thompson,et al.  Multivariate Statistics of the Jacobian Matrices in Tensor Based Morphometry and Their Application to HIV/AIDS , 2006, MICCAI.

[4]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[5]  Christos Davatzikos,et al.  On Characterizing and Analyzing Diffusion Tensor Images by Learning their Underlying Manifold Structure , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[6]  Jean-Francois Mangin,et al.  Registration of Cortical Connectivity Matrices , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[7]  Paul M. Thompson,et al.  3D mapping of ventricular and corpus callosum abnormalities in HIV/AIDS , 2006, NeuroImage.

[8]  Colin Studholme,et al.  Deformation-based mapping of volume change from serial brain MRI in the presence of local tissue contrast change , 2006, IEEE Transactions on Medical Imaging.

[9]  Paul M. Thompson,et al.  Fluid registration of medical images using Jensen-Renyi divergence reveals 3D profile of brain atrophy in HIV/AIDS , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[10]  Rachid Deriche,et al.  A statistical framework for DTI segmentation , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[11]  Paul M. Thompson,et al.  Use of 3-D cortical morphometry for mapping increased cortical gyrification and complexity in Williams syndrome , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[12]  Rachid Deriche,et al.  A fast and rigorous anisotropic smoothing method for DT-MRI , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[13]  Paul M. Thompson,et al.  White matter abnormalities in autism detected through transverse relaxation time imaging , 2006, NeuroImage.

[14]  Nicholas Ayache,et al.  Riemannian Elasticity: A Statistical Regularization Framework for Non-linear Registration , 2005, MICCAI.

[15]  Nicholas Ayache,et al.  Incorporating Statistical Measures of Anatomical Variability in Atlas-to-Subject Registration for Conformal Brain Radiotherapy , 2005, MICCAI.

[16]  John H. Gilmore,et al.  Fiber Tract-Oriented Statistics for Quantitative Diffusion Tensor MRI Analysis , 2005, MICCAI.

[17]  Michael F. Cohen,et al.  An iterative optimization approach for unified image segmentation and matting , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[18]  Kiralee M. Hayashi,et al.  Thinning of the cerebral cortex visualized in HIV/AIDS reflects CD4+ T lymphocyte decline , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Paul M. Thompson,et al.  Inverse Consistent Mapping in 3D Deformable Image Registration: Its Construction and Statistical Properties , 2005, IPMI.

[20]  Paul M. Thompson,et al.  Extrapolation of Sparse Tensor Fields: Application to the Modeling of Brain Variability , 2005, IPMI.

[21]  R. Dougherty,et al.  Cross‐subject comparison of principal diffusion direction maps , 2005, Magnetic resonance in medicine.

[22]  Moo K. Chung,et al.  Cortical thickness analysis in autism with heat kernel smoothing , 2005, NeuroImage.

[23]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[24]  Maher Moakher,et al.  A rigorous framework for diffusion tensor calculus , 2005, Magnetic resonance in medicine.

[25]  L. Younes,et al.  Statistics on diffeomorphisms via tangent space representations , 2004, NeuroImage.

[26]  J. Gee,et al.  Geodesic estimation for large deformation anatomical shape averaging and interpolation , 2004, NeuroImage.

[27]  M. Miller Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms , 2004, NeuroImage.

[28]  Kiralee M. Hayashi,et al.  Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia , 2004, NeuroImage.

[29]  Darryl D. Holm,et al.  Soliton dynamics in computational anatomy , 2004, NeuroImage.

[30]  K. Manly,et al.  Genomics, prior probability, and statistical tests of multiple hypotheses. , 2004, Genome research.

[31]  P. Thomas Fletcher,et al.  Principal Geodesic Analysis on Symmetric Spaces: Statistics of Diffusion Tensors , 2004, ECCV Workshops CVAMIA and MMBIA.

[32]  Martin Styner,et al.  Statistical shape analysis of neuroanatomical structures based on medial models , 2003, Medical Image Anal..

[33]  R. Woods,et al.  Characterizing volume and surface deformations in an atlas framework: theory, applications, and implementation , 2003, NeuroImage.

[34]  Nick C Fox,et al.  Computer-assisted imaging to assess brain structure in healthy and diseased brains , 2003, The Lancet Neurology.

[35]  Paul Suetens,et al.  A Viscous Fluid Model for Multimodal Non-rigid Image Registration Using Mutual Information , 2002, MICCAI.

[36]  John D. Storey A direct approach to false discovery rates , 2002 .

[37]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[38]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[39]  Tyrone D. Cannon,et al.  Genetic influences on brain structure , 2001, Nature Neuroscience.

[40]  Christos Davatzikos,et al.  Voxel-Based Morphometry Using the RAVENS Maps: Methods and Validation Using Simulated Longitudinal Atrophy , 2001, NeuroImage.

[41]  Norbert Schuff,et al.  Detecting Spatially Consistent Structural Differences in Alzheimer's and Fronto Temporal Dementia Using Deformation Morphometry , 2001, MICCAI.

[42]  Karl J. Friston,et al.  A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains , 2001, NeuroImage.

[43]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[44]  Neil Roberts,et al.  Statistical analysis of normal and abnormal dissymmetry in volumetric medical images , 1998, Proceedings. Workshop on Biomedical Image Analysis (Cat. No.98EX162).

[45]  Alan C. Evans,et al.  Growth patterns in the developing brain detected by using continuum mechanical tensor maps , 2000, Nature.

[46]  Nick C Fox,et al.  Using serial registered brain magnetic resonance imaging to measure disease progression in Alzheimer disease: power calculations and estimates of sample size to detect treatment effects. , 2000, Archives of neurology.

[47]  Karl J. Friston,et al.  Image registration using a symmetric prior—in three dimensions , 1999, Human brain mapping.

[48]  Karl J. Friston,et al.  High-Dimensional Image Registration Using Symmetric Priors , 1999, NeuroImage.

[49]  K. Worsley,et al.  THE DETECTION OF LOCAL SHAPE CHANGES VIA THE GEOMETRY OF HOTELLING’S T 2 FIELDS 1 , 1999 .

[50]  U. Grenander,et al.  Computational anatomy: an emerging discipline , 1998 .

[51]  U. Grenander,et al.  Hippocampal morphometry in schizophrenia by high dimensional brain mapping. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[53]  Morten Bro-Nielsen,et al.  Fast Fluid Registration of Medical Images , 1996, VBC.

[54]  Paul A. Viola,et al.  Multi-modal volume registration by maximization of mutual information , 1996, Medical Image Anal..

[55]  A. Toga,et al.  High-Resolution Random Mesh Algorithms for Creating a Probabilistic 3D Surface Atlas of the Human Brain , 1996, NeuroImage.

[56]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[57]  W. Kendall Probability, Convexity, and Harmonic Maps with Small Image I: Uniqueness and Fine Existence , 1990 .

[58]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[59]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[60]  I. Corouge,et al.  Analysis of brain white matter via fiber tract modeling , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[61]  M. Buchsbaum,et al.  Ventricular enlargement in schizophrenia related to volume reduction of the thalamus, striatum, and superior temporal cortex. , 2004, The American journal of psychiatry.

[62]  J. S. Marron,et al.  Statistical variability in nonlinear spaces: application to shape analysis and dt-mri , 2004 .

[63]  X. Pennec Probabilities and Statistics on Riemannian Manifolds : A Geometric approach , 2004 .

[64]  Luc Van Gool,et al.  Automated image registration , 2004 .

[65]  R. Davidson,et al.  Probabilistic Connectivity Measure in Diffusion Tensor Imaging via Anisotropic Kernel Smoothing , 2003 .

[66]  William R. Crum,et al.  INFORMATION PROCESSING IN MEDICAL IMAGING, PROCEEDINGS , 2003 .

[67]  Keith J. Worsley,et al.  Applications of Random Fields in Human Brain Mapping , 2001 .

[68]  T. Schormann,et al.  Statistics of Nonlinear Spatial Distortions in Histological Images , 2001 .

[69]  Anders M. Dale,et al.  Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex , 2001, IEEE Transactions on Medical Imaging.

[70]  A. Toga,et al.  A SURFACE-BASED TECHNIQUE FOR WARPING 3-DIMENSIONAL IMAGES OF THE BRAIN , 2000 .

[71]  Xavier Pennec,et al.  Probabilities and statistics on Riemannian manifolds: Basic tools for geometric measurements , 1999, NSIP.

[72]  M. Bro-Nielsen,et al.  Comparison of three lters in the solution of the Navier-Stokes equation in registration , 1997 .

[73]  Jin Cao Excursion Sets of Random Fields With Applications to Human Brain Mapping , 1997 .

[74]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[75]  Jean-Philippe Thirion,et al.  Fast Non-Rigid Matching of 3D Medical Images , 1995 .

[76]  Gary E. Christensen,et al.  Deformable Shape Models for Anatomy , 1994 .

[77]  C. Barillot,et al.  08 - Fusion intra et inter individus en imagerie médicale appliquée à la modélisation anatomique du cerveau humain , 1994 .

[78]  J. Marroquín,et al.  Information Processing in Medical Imaging , 1984, Springer Netherlands.

[79]  M. Fréchet Les éléments aléatoires de nature quelconque dans un espace distancié , 1948 .

[80]  Human Brain Mapping 6:364–367(1998) � Applications of Random Field Theory to Functional Connectivity , 2022 .