On bicriterion minimal spanning trees: An approximation
暂无分享,去创建一个
[1] I. Murthy,et al. An interactive procedure using domination cones for bicriterion shortest path problems , 1994 .
[2] Andrzej Jaszkiewicz,et al. Pareto Simulated Annealing , 1997 .
[3] Robert E. Tarjan,et al. Self-adjusting binary search trees , 1985, JACM.
[4] R. Prim. Shortest connection networks and some generalizations , 1957 .
[5] M. Ehrgott,et al. Connectedness of efficient solutions in multiple criteria combinatorial optimization , 1997 .
[6] Yash P. Aneja,et al. Minimal spanning tree subject to a side constraint , 1982, Comput. Oper. Res..
[7] Harold N. Gabow,et al. Two Algorithms for Generating Weighted Spanning Trees in Order , 1977, SIAM J. Comput..
[8] H. Kunzi,et al. Lectu re Notes in Economics and Mathematical Systems , 1975 .
[9] Paolo Serafini,et al. Some Considerations about Computational Complexity for Multi Objective Combinatorial Problems , 1987 .
[10] Horst W. Hamacher,et al. On spanning tree problems with multiple objectives , 1994, Ann. Oper. Res..
[11] John N. Hooker,et al. Needed: An Empirical Science of Algorithms , 1994, Oper. Res..
[12] Jack Edmonds,et al. Matroids and the greedy algorithm , 1971, Math. Program..
[13] J. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .
[14] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[15] Y. Aneja,et al. BICRITERIA TRANSPORTATION PROBLEM , 1979 .
[16] Ramaswamy Chandrasekaran,et al. Minimal ratio spanning trees , 1977, Networks.