An Adaptive Scalarization Method in Multiobjective Optimization

This paper presents a new method for the numerical solution of nonlinear multiobjective optimization problems with an arbitrary partial ordering in the objective space induced by a closed pointed convex cone. This algorithm is based on the well-known scalarization approach by Pascoletti and Serafini and adaptively controls the scalarization parameters using new sensitivity results. The computed image points give a nearly equidistant approximation of the whole Pareto surface. The effectiveness of this new method is demonstrated with various test problems and an applied problem from medicine.

[1]  Lotfi A. Zadeh,et al.  Optimality and non-scalar-valued performance criteria , 1963 .

[2]  Siegfried Helbig An interactive algorithm for nonlinear vector optimization , 1990 .

[3]  Georges M. Fadel,et al.  Multi-scenario Multi-objective Optimization with Applications in Engineering Design , 2009 .

[4]  Joshua D. Knowles,et al.  On metrics for comparing nondominated sets , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[5]  J. Jahn Mathematical vector optimization in partially ordered linear spaces , 1986 .

[6]  Charalambos D. Aliprantis,et al.  Equilibrium analysis in financial markets with countably many securities , 2004 .

[7]  Siegfried Helbig,et al.  Approximation of the efficient point set by perturbation of the ordering cone , 1991, ZOR Methods Model. Oper. Res..

[8]  Kalyanmoy Deb,et al.  Running performance metrics for evolutionary multi-objective optimizations , 2002 .

[9]  Ignacy Kaliszewski,et al.  Quantitative Pareto Analysis by Cone Separation Technique , 1994 .

[10]  Gabriele Eichfelder,et al.  Scalarizations for adaptively solving multi-objective optimization problems , 2009, Comput. Optim. Appl..

[11]  Andrzej Niemierko Response to “Comment on ‘Reporting and analyzing dose distributions:\sA concept of equivalent uniform dose’ ” [Med Phys. 24, 1323–1324 (1997)] , 1997 .

[12]  A. Charnes,et al.  Generalization of Domination Structures and Nondominated Solutions in Multicriteria Decision Making , 1976 .

[13]  椹木 義一,et al.  Theory of multiobjective optimization , 1985 .

[14]  P. Yu Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives , 1974 .

[15]  Johannes Jahn,et al.  Vector optimization - theory, applications, and extensions , 2004 .

[16]  Ching-Lai Hwang,et al.  Fuzzy Multiple Attribute Decision Making - Methods and Applications , 1992, Lecture Notes in Economics and Mathematical Systems.

[17]  Johannes Jahn,et al.  Multiobjective Search Algorithm with Subdivision Technique , 2006, Comput. Optim. Appl..

[18]  D Baltas,et al.  A multiobjective gradient-based dose optimization algorithm for external beam conformal radiotherapy. , 2001, Physics in medicine and biology.

[19]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[20]  Margaret M. Wiecek,et al.  Cones to Aid Decision Making in Multicriteria Programming , 2003 .

[21]  Kalyanmoy Deb,et al.  Constrained Test Problems for Multi-objective Evolutionary Optimization , 2001, EMO.

[22]  Josef Bille Multicriteria Optimization in Inverse Radiotherapy Planning , 2003 .

[23]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[24]  Masahiro Tanaka,et al.  GA-based decision support system for multicriteria optimization , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[25]  L. Lasdon,et al.  On a bicriterion formation of the problems of integrated system identification and system optimization , 1971 .

[26]  Fernando Alonso,et al.  Intensity-modulated radiotherapy – a large scale multi-criteria programming problem , 2003, OR Spectr..

[27]  Johannes Jahn,et al.  Optimization of rod antennas of mobile phones , 2004, Math. Methods Oper. Res..

[28]  L. N. Vicente,et al.  Multicriteria Approach to Bilevel Optimization , 2006 .

[29]  I. Y. Kim,et al.  Adaptive weighted-sum method for bi-objective optimization: Pareto front generation , 2005 .

[30]  ZitzlerE.,et al.  Multiobjective evolutionary algorithms , 1999 .

[31]  Serpil Sayin,et al.  Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming , 2000, Math. Program..

[32]  Jörg Fliege An Efficient Interior-Point Method for Convex Multicriteria Optimization Problems , 2006, Math. Oper. Res..

[33]  P. Serafini,et al.  Scalarizing vector optimization problems , 1984 .

[34]  Hsien-Chung Wu,et al.  A Solution Concept for Fuzzy Multiobjective Programming Problems Based on Convex Cones , 2004 .

[35]  J. Zowe,et al.  Second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems , 1979 .

[36]  Horst W. Hamacher,et al.  Inverse Radiation Therapy Planning: A Multiple Objective Optimisation Approach , 1999 .

[37]  Johannes Jahn,et al.  Reference point approximation method for the solution of bicriterial nonlinear optimization problems , 1992 .

[38]  Gabriele Eichfelder Application to Intensity Modulated Radiotherapy , 2008 .

[39]  A. Messac,et al.  Normal Constraint Method with Guarantee of Even Representation of Complete Pareto Frontier , 2004 .

[40]  D. Corne,et al.  On Metrics for Comparing Non Dominated Sets , 2001 .

[41]  J. Jahn Introduction to the Theory of Nonlinear Optimization , 1994 .

[42]  Brian J. Hunt Multiobjective Programming with Convex Cones: Methodology and Applications , 2004 .

[43]  Kathrin Klamroth,et al.  Norm-Based Approximation in Bicriteria Programming , 2001, Comput. Optim. Appl..

[44]  M. Alber,et al.  Intensity modulated radiotherapy treatment planning by use of a barrier-penalty multiplier method , 2007, Optim. Methods Softw..

[45]  Anthony V. Fiacco,et al.  Sensitivity analysis for nonlinear programming using penalty methods , 1976, Math. Program..

[46]  C. Hwang Multiple Objective Decision Making - Methods and Applications: A State-of-the-Art Survey , 1979 .

[47]  C. Hwang,et al.  Fuzzy Multiple Objective Decision Making: Methods And Applications , 1996 .

[48]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[49]  Johannes Jahn,et al.  A Bicriterial Optimization Problem of Antenna Design , 1997, Comput. Optim. Appl..

[50]  Jörg Fliege,et al.  Gap-free computation of Pareto-points by quadratic scalarizations , 2004, Math. Methods Oper. Res..

[51]  Patrick Siarry,et al.  Three new metrics to measure the convergence of metaheuristics towards the Pareto frontier and the aesthetic of a set of solutions in biobjective optimization , 2005, Comput. Oper. Res..

[52]  Michael Monz,et al.  Pareto Navigation - Interactive multiobjective optimisation and its application in radiotherapy planning , 2006 .

[53]  K. Jittorntrum Solution point differentiability without strict complementarity in nonlinear programming , 1984 .

[54]  Olivier de Weck,et al.  Adaptive Weighted Sum Method for Bi-objective Optimization , 2004 .

[55]  Fernando Alonso,et al.  IMRT planning on adaptive volume structures—a decisive reduction in computational complexity , 2005, Physics in medicine and biology.