Stochastic surveillance strategies for spatial quickest detection

We present stochastic vehicle routing policies for detection of any number of anomalies in a set of regions of interest. The autonomous vehicle collects information from a set of regions and sends it to a fusion center. The vehicle follows a randomized region selection policy at each iteration. Using the collected information, the fusion center runs an ensemble of cumulative sum (CUSUM) algorithms in order to detect the presence of an anomaly in any region. We first determine optimal stationary policies that result in quickest detection of all anomalies. We then study an adaptive policy that assigns higher selection probability to a region with higher likelihood of an anomaly. We provide a comparative study of these policies.

[1]  Antonio Franchi,et al.  On Cooperative Patrolling: Optimal Trajectories, Complexity Analysis, and Approximation Algorithms , 2011, IEEE Transactions on Robotics.

[2]  Vaibhav Srivastava,et al.  Stochastic surveillance strategies for spatial quickest detection , 2013, Int. J. Robotics Res..

[3]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[4]  Randal W. Beard,et al.  Decentralized Perimeter Surveillance Using a Team of UAVs , 2005, IEEE Transactions on Robotics.

[5]  Stephen P. Boyd,et al.  Fastest Mixing Markov Chain on a Graph , 2004, SIAM Rev..

[6]  Luigi Chisci,et al.  Optimal UAV coordination for target tracking using dynamic programming , 2010, 49th IEEE Conference on Decision and Control (CDC).

[7]  Joel W. Burdick,et al.  Analysis of Search Decision Making Using Probabilistic Search Strategies , 2012, IEEE Transactions on Robotics.

[8]  Dusan M. Stipanovic,et al.  On a stochastic robotic surveillance problem , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[9]  Badrinath Roysam,et al.  Image change detection algorithms: a systematic survey , 2005, IEEE Transactions on Image Processing.

[10]  Daniela Rus,et al.  Multi-robot monitoring in dynamic environments with guaranteed currency of observations , 2010, 49th IEEE Conference on Decision and Control (CDC).

[11]  Peter Willett,et al.  Detection of hidden Markov model transient signals , 2000, IEEE Trans. Aerosp. Electron. Syst..

[12]  Francesco Bullo,et al.  Cooperative Patrolling via Weighted Tours: Performance Analysis and Distributed Algorithms , 2012, IEEE Transactions on Robotics.

[13]  D J Klein,et al.  On UAV routing protocols for sparse sensor data exfiltration , 2010, Proceedings of the 2010 American Control Conference.

[14]  Giuseppe Carlo Calafiore,et al.  Research on probabilistic methods for control system design , 2011, Autom..

[15]  Jonathan D. Cohen,et al.  The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. , 2006, Psychological review.

[16]  Michèle Basseville,et al.  Detection of abrupt changes: theory and application , 1993 .

[17]  Vaibhav Srivastava,et al.  Randomized Sensor Selection in Sequential Hypothesis Testing , 2009, IEEE Transactions on Signal Processing.

[18]  Jacques Wainer,et al.  Probabilistic Multiagent Patrolling , 2008, SBIA.

[19]  J. Baillieul,et al.  Stochastic Strategies for Autonomous Robotic Surveillance , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[20]  Geoffrey A. Hollinger,et al.  Autonomous data collection from underwater sensor networks using acoustic communication , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Mac Schwager,et al.  Persistent Robotic Tasks: Monitoring and Sweeping in Changing Environments , 2011, IEEE Transactions on Robotics.

[22]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[23]  D. Siegmund Sequential Analysis: Tests and Confidence Intervals , 1985 .

[24]  Emilio Frazzoli,et al.  Dynamic Vehicle Routing for Robotic Systems , 2011, Proceedings of the IEEE.

[25]  Vaibhav Srivastava,et al.  Adaptive sensor selection in sequential hypothesis testing , 2011, IEEE Conference on Decision and Control and European Control Conference.

[26]  David A. Castañón Optimal search strategies in dynamic hypothesis testing , 1995, IEEE Trans. Syst. Man Cybern..

[27]  Larry Wasserman,et al.  All of Statistics: A Concise Course in Statistical Inference , 2004 .

[28]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[29]  Sean P. Meyn,et al.  Minimax Robust Quickest Change Detection , 2009, IEEE Transactions on Information Theory.

[30]  Geoffrey A. Hollinger,et al.  Active Classification: Theory and Application to Underwater Inspection , 2011, ISRR.

[31]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[32]  S. Resnick A Probability Path , 1999 .

[33]  Francesco Bullo,et al.  Smooth Nearness-Diagram Navigation , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[34]  J.P. Hespanha,et al.  Multiple-agent probabilistic pursuit-evasion games , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[35]  Richard M. Murray,et al.  On a stochastic sensor selection algorithm with applications in sensor scheduling and sensor coverage , 2006, Autom..

[36]  Emilio Frazzoli,et al.  Human-in-the-loop vehicle routing policies for dynamic environments , 2008, 2008 47th IEEE Conference on Decision and Control.

[37]  Yann Chevaleyre,et al.  Theoretical analysis of the multi-agent patrolling problem , 2004, Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004)..

[38]  Thomas Bewley,et al.  Estimation and adaptive observation of environmental plumes , 2011, Proceedings of the 2011 American Control Conference.

[39]  Joel W. Burdick,et al.  A Decision-Making Framework for Control Strategies in Probabilistic Search , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[40]  Yehuda Elmaliach,et al.  A realistic model of frequency-based multi-robot polyline patrolling , 2008, AAMAS.

[41]  이동호,et al.  다공성 표면을 이용한 Spike 선두형 물체의 항력 감소 수치 해석 , 1996 .