A real-time multigrid finite hexahedra method for elasticity simulation using CUDA

Abstract We present a multigrid approach for simulating elastic deformable objects in real time on recent NVIDIA GPU architectures. To accurately simulate large deformations we consider the co-rotated strain formulation. Our method is based on a finite element discretization of the deformable object using hexahedra. It draws upon recent work on multigrid schemes for the efficient numerical solution of partial differential equations on such discretizations. Due to the regular shape of the numerical stencil induced by the hexahedral regime, and since we use matrix-free formulations of all multigrid steps, computations and data layout can be restructured to avoid execution divergence of parallel running threads and to enable coalescing of memory accesses into single memory transactions. This enables to effectively exploit the GPU’s parallel processing units and high memory bandwidth via the CUDA parallel programming API. We demonstrate performance gains of up to a factor of 27 and 4 compared to a highly optimized CPU implementation on a single CPU core and 8 CPU cores, respectively. For hexahedral models consisting of as many as 269,000 elements our approach achieves physics-based simulation at 11 time steps per second.

[1]  Robert Strzodka,et al.  Using GPUs to improve multigrid solver performance on a cluster , 2008, Int. J. Comput. Sci. Eng..

[2]  J. Canny,et al.  Real-time Simulation of Physically Realistic Global Deformation , 1999 .

[3]  Suvranu De,et al.  GPU accelerated fast FEM deformation simulation , 2008, APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems.

[4]  Mathieu Desbrun,et al.  Dynamic real-time deformations using space & time adaptive sampling , 2001, SIGGRAPH.

[5]  T. Belytschko,et al.  Applications of higher order corotational stretch theories to nonlinear finite element analysis , 1979 .

[6]  Leonard McMillan,et al.  Stable real-time deformations , 2002, SCA '02.

[7]  Stephane Cotin,et al.  Efficient Nonlinear FEM for Soft Tissue Modelling and Its GPU Implementation within the Open Source Framework SOFA , 2008, ISBMS.

[8]  Frank Tendick,et al.  Multigrid Integration for Interactive Deformable Body Simulation , 2004, ISMS.

[9]  Rüdiger Westermann,et al.  Workshop on Virtual Reality Interaction and Physical Simulation (2005) a Multigrid Framework for Real-time Simulation of Deformable Volumes , 2022 .

[10]  K. Bathe Finite Element Procedures , 1995 .

[11]  Kipton Barros,et al.  Solving lattice QCD systems of equations using mixed precision solvers on GPUs , 2009, Comput. Phys. Commun..

[12]  Rüdiger Westermann,et al.  Computational Steering for Patient-Specific Implant Planning in Orthopedics , 2008, VCBM.

[13]  John D. Owens,et al.  GPU Computing , 2008, Proceedings of the IEEE.

[14]  J. Krüger,et al.  INTERACTIVE COLLISION DETECTION FOR DEFORMABLE AND GPU OBJECTS , 2007 .

[15]  Christian Laugier,et al.  Simulating soft tissue cutting using finite element models , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[16]  Jens H. Krüger,et al.  A Survey of General‐Purpose Computation on Graphics Hardware , 2007, Eurographics.

[17]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[18]  J. Canny,et al.  Real-time simulation of physically realistic global deformations , 2000 .

[19]  Carlos A. Felippa,et al.  A unified formulation of small-strain corotational finite elements: I. Theory , 2005 .

[20]  Herve Delingette,et al.  Real-Time Elastic Deformations of Soft Tissues for Surgery Simulation , 1999, IEEE Trans. Vis. Comput. Graph..

[21]  Elmar Eisemann,et al.  Single-pass GPU solid voxelization for real-time applications , 2008, Graphics Interface.

[22]  Demetri Terzopoulos,et al.  Modeling inelastic deformation: viscolelasticity, plasticity, fracture , 1988, SIGGRAPH.

[23]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[24]  Michael Griebel,et al.  An Algebraic Multigrid Method for Linear Elasticity , 2003, SIAM J. Sci. Comput..

[25]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[26]  J. Hall,et al.  The multigrid method in solid mechanics: Part I—Algorithm description and behaviour , 1990 .

[27]  Antonio Susín,et al.  Non structured meshes for Cloth GPU simulation using FEM , 2006, VRIPHYS.

[28]  Hualiang Zhong,et al.  A real time finite element based tissue simulation method incorporating nonlinear elastic behavior , 2005, Computer methods in biomechanics and biomedical engineering.

[29]  Rüdiger Westermann,et al.  Corotated Finite Elements Made Fast and Stable , 2008, VRIPHYS.

[30]  John F. Canny,et al.  Real-time and physically realistic simulation of global deformation , 1999, SIGGRAPH '99.

[31]  Thomas Sangild Sørensen,et al.  An Introduction to GPU Accelerated Surgical Simulation , 2006, ISBMS.

[32]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[33]  Graham F. Carey,et al.  Introduction to Finite Element Analysis: Theory and Application , 1973 .

[34]  George Biros,et al.  A Parallel Geometric Multigrid Method for Finite Elements on Octree Meshes , 2010, SIAM J. Sci. Comput..

[35]  Pheng-Ann Heng,et al.  A hybrid condensed finite element model with GPU acceleration for interactive 3D soft tissue cutting: Research Articles , 2004 .

[36]  Frank Tendick,et al.  Adaptive Nonlinear Finite Elements for Deformable Body Simulation Using Dynamic Progressive Meshes , 2001, Comput. Graph. Forum.

[37]  K. Miller,et al.  Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation , 2006 .

[38]  Hervé Delingette,et al.  Nonlinear and anisotropic elastic soft tissue models for medical simulation , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[39]  Wolfgang Straßer,et al.  Corotational Simulation of Deformable Solids , 2004, WSCG.

[40]  Jens H. Krüger,et al.  GPGPU: general purpose computation on graphics hardware , 2004, SIGGRAPH '04.

[41]  C. Rankin,et al.  An element independent corotational procedure for the treatment of large rotations , 1986 .

[42]  John D. Owens,et al.  General Purpose Computation on Graphics Hardware , 2005, IEEE Visualization.

[43]  Pheng-Ann Heng,et al.  A hybrid condensed finite element model with GPU acceleration for interactive 3D soft tissue cutting , 2004, Comput. Animat. Virtual Worlds.

[44]  Hervé Delingette,et al.  Non-linear anisotropic elasticity for real-time surgery simulation , 2003, Graph. Model..

[45]  Jérémie Allard,et al.  Image-based collision detection and response between arbitrary volume objects , 2008, SCA '08.

[46]  James Demmel,et al.  Parallel Multigrid Solver for 3D Unstructured Finite Element Problems , 1999, SC.

[47]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[48]  Morten Bro-Nielsen,et al.  Real‐time Volumetric Deformable Models for Surgery Simulation using Finite Elements and Condensation , 1996, Comput. Graph. Forum.

[49]  N. Higham Computing the polar decomposition with applications , 1986 .

[50]  Wolfgang Straßer,et al.  A fast finite element solution for cloth modelling , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[51]  Sébastien Ourselin,et al.  High-Speed Nonlinear Finite Element Analysis for Surgical Simulation Using Graphics Processing Units , 2008, IEEE Transactions on Medical Imaging.

[52]  Thomas Sangild Sørensen,et al.  A GPU accelerated spring mass system for surgical simulation. , 2005, Studies in health technology and informatics.