Kolmogorov-Chaitin complexity of digital controller implementations

The complexity of linear, fixed-point arithmetic digital controllers is investigated from a Kolmogorov-Chaitin perspective. Based on the idea of Kolmogorov-Chaitin complexity, practical measures of complexity are developed for statespace realizations, parallel and cascade realizations, and for a newly proposed generalized implicit state-space realization. The complexity of solutions to a restricted complexity controller benchmark problem is investigated using this measure. The results show that from a Kolmogorov-Chaitin viewpoint, higher-order controllers with a shorter word-length may have lower complexity and better performance, than lower-order controllers with longer word-length.

[1]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[2]  Andrew G. Dempster,et al.  IIR digital filter design using minimum adder multiplier blocks , 1998 .

[3]  Graham C. Goodwin,et al.  Moving horizon design of discrete coefficient FIR filters , 2005, IEEE Transactions on Signal Processing.

[4]  J. B. Knowles,et al.  Effect of a finite-word-length computer in a sampled-data feedback system , 1965 .

[5]  Wonyong Sung,et al.  Combined word-length optimization and high-level synthesis ofdigital signal processing systems , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[6]  P K Houpt,et al.  Roundoff noise and scaling in the digital implementation of control compensators , 1983 .

[7]  B. Bomar,et al.  Minimum roundoff noise digital filters with some power-of-two coefficients , 1984 .

[8]  Gregory J. Chaitin,et al.  On the Length of Programs for Computing Finite Binary Sequences , 1966, JACM.

[9]  Ioan Doré Landau,et al.  Control of an Active Suspension System as a Benchmark for Design and Optimisation of Restricted-Complexity Controllers , 2003, Eur. J. Control.

[10]  James F. Whidborne A genetic algorithm approach to designing finite-precision PID controller structures , 1999 .

[11]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[12]  L. Rabiner,et al.  Analysis of quantization errors in the direct form for finite impulse response digital filters , 1973 .

[13]  Clifford T. Mullis,et al.  Synthesis of minimum roundoff noise fixed point digital filters , 1976 .

[14]  E. Curry The analysis of round-off and truncation errors in a hybrid control system , 1967 .

[15]  D. Kodek Design of optimal finite wordlength FIR digital filters using integer programming techniques , 1980 .

[16]  Yi Cao,et al.  Multi-Objective Optimisation of Restricted Complexity Controllers , 2003, Eur. J. Control.

[17]  Pierre R. Belanger,et al.  Scaling and Roundoff in Fixed-Point Implementation of Control Algorithms , 1984, IEEE Transactions on Industrial Electronics.

[18]  D. Williamson Digital control and implementation : finite wordlength considerations , 1991 .

[19]  S. Beheshti,et al.  A new information-theoretic approach to signal denoising and best basis selection , 2005, IEEE Transactions on Signal Processing.

[20]  Lothar Thiele,et al.  Design of sensitivity and round-off noise optimal state-space discrete systems , 1984 .

[21]  James F. Whidborne,et al.  Digital Controller Implementation and Fragility , 2001 .

[22]  Patrick E. Mantey Eigenvalue sensitivity and state-variable selection , 1968 .

[23]  David S. K. Chan Constrained minimization of roundoff noise in fixed-point digital filters , 1979, ICASSP.

[24]  Munther A. Dahleh,et al.  A new minimum description length , 2003, Proceedings of the 2003 American Control Conference, 2003..

[25]  James F. Whidborne,et al.  Kolmogorov-Chaitin complexity of linear digital controllers implemented using fixed-point arithmetic , 2004, ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004..

[26]  K. Steiglitz,et al.  Some complexity issues in digital signal processing , 1984 .

[27]  Jian-Bo Yang,et al.  Multiobjective design of low complexity digital controllers , 2002, Proceedings. IEEE International Symposium on Computer Aided Control System Design.

[28]  Wayne Luk,et al.  Wordlength optimization for linear digital signal processing , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[29]  Andrew G. Dempster,et al.  Variation of FIR filter complexity with order , 1995, 38th Midwest Symposium on Circuits and Systems. Proceedings.

[30]  Philippe Chevrel,et al.  IMPLICIT STATE-SPACE REPRESENTATION : A UNIFYING FRAMEWORK FOR FWL IMPLEMENTATION OF LTI SYSTEMS , 2005 .

[31]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[32]  Joan Carletta,et al.  A methodology for FPGA-based control implementation , 2005, IEEE Transactions on Control Systems Technology.

[33]  Andrew G. Dempster Reducing complexity by increasing order of IIR digital filters , 1996, Proceedings of Third International Conference on Electronics, Circuits, and Systems.

[34]  Jürgen Schmidhuber,et al.  Discovering Neural Nets with Low Kolmogorov Complexity and High Generalization Capability , 1997, Neural Networks.

[35]  Uri Shaked,et al.  Minimization of roundoff errors in digital realizations of Kalman filters , 1989, IEEE Trans. Acoust. Speech Signal Process..

[36]  James F. Whidborne,et al.  Digital Controller Implementation and Fragility: A Modern Perspective , 2001 .

[37]  S. Hwang Minimum uncorrelated unit noise in state-space digital filtering , 1977 .

[38]  Paul Moroney,et al.  Issues in the implementation of digital feedback compensators , 1983 .

[39]  Gang Li,et al.  On the structure of digital controllers in sampled-data systems with FWL consideration , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[40]  R. M. Goodall,et al.  Digital Control: Fundamentals, Theory and Practice , 1991 .

[41]  David Bull,et al.  Primitive operator digital filters , 1991 .

[42]  K. Steiglitz,et al.  Filter-length word-length tradeoffs in FIR digital filter design , 1980 .

[43]  J. Chu,et al.  Shift and delta operator realisations for digital controllers with finite word length considerations , 2000 .

[44]  Brian D. O. Anderson,et al.  Optimal FWL design of state-space digital systems with weighted sensitivity minimization and sparseness consideration , 1992 .

[45]  K. Nakayama Permuted difference coefficient realization of FIR digital filters , 1982 .

[46]  M. Gevers,et al.  Parametrizations in Control, Estimation and Filtering Problems: Accuracy Aspects , 1993 .

[47]  J. Slaughter Quantization errors in digital control systems , 1964 .

[48]  Lothar Thiele,et al.  On the sensitivity of linear state-space systems , 1986 .