Conserved size and periodicity of pyramidal patches in layer 2 of medial/caudal entorhinal cortex

To understand the structural basis of grid cell activity, we compare medial entorhinal cortex architecture in layer 2 across five mammalian species (Etruscan shrews, mice, rats, Egyptian fruit bats, and humans), bridging ∼100 million years of evolutionary diversity. Principal neurons in layer 2 are divided into two distinct cell types, pyramidal and stellate, based on morphology, immunoreactivity, and functional properties. We confirm the existence of patches of calbindin‐positive pyramidal cells across these species, arranged periodically according to analyses techniques like spatial autocorrelation, grid scores, and modifiable areal unit analysis. In rodents, which show sustained theta oscillations in entorhinal cortex, cholinergic innervation targeted calbindin patches. In bats and humans, which only show intermittent entorhinal theta activity, cholinergic innervation avoided calbindin patches. The organization of calbindin‐negative and calbindin‐positive cells showed marked differences in entorhinal subregions of the human brain. Layer 2 of the rodent medial and the human caudal entorhinal cortex were structurally similar in that in both species patches of calbindin‐positive pyramidal cells were superimposed on scattered stellate cells. The number of calbindin‐positive neurons in a patch increased from ∼80 in Etruscan shrews to ∼800 in humans, only an ∼10‐fold over a 20,000‐fold difference in brain size. The relatively constant size of calbindin patches differs from cortical modules such as barrels, which scale with brain size. Thus, selective pressure appears to conserve the distribution of stellate and pyramidal cells, periodic arrangement of calbindin patches, and relatively constant neuron number in calbindin patches in medial/caudal entorhinal cortex. J. Comp. Neurol. 524:783–806, 2016. © 2015 The Authors. The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

[1]  H. H. Donaldson,et al.  On the weight of the parts of the brain and on the percentage of water in them according to brain weight and to age, in albino and in wild Norway rats , 1931 .

[2]  C. E. Gehlke,et al.  Certain Effects of Grouping upon the Size of the Correlation Coefficient in Census Tract Material , 1934 .

[3]  M. Abercrombie Estimation of nuclear population from microtome sections , 1946, The Anatomical record.

[4]  W. Penfield,et al.  The Cerebral Cortex of Man: A Clinical Study of Localization of Function , 1968 .

[5]  T. Blackstad Commissural connections of the hippocampal region in the rat, with special reference to their mode of termination , 1956, The Journal of comparative neurology.

[6]  T. Blackstad,et al.  CHOLINESTERASE IN THE HIPPOCAMPAL REGION , 1964 .

[7]  D. Lindsley,et al.  The human brain in figures and tables : a quantitative handbook , 1968 .

[8]  R. Snider The Human Brain in Figures and Tables , 1969, Neurology.

[9]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. , 1970, Brain research.

[10]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (S I) of mouse cerebral cortex , 1970 .

[11]  H. Braak [Pigmentarchitecture of the human cortex cerebri. I. Regio entorhinalis]. , 1972, Zeitschrift fur Zellforschung und mikroskopische Anatomie.

[12]  T. Woolsey,et al.  A proportional relationship between peripheral innervation density and cortical neuron number in the somatosensory system of the mouse , 1975, Brain Research.

[13]  H. Braak,et al.  [Do the island neurons of regio entorhinalis belong to the class of pyramid or star-shaped cells?]. , 1976, Zeitschrift fur mikroskopisch-anatomische Forschung.

[14]  Dr. Finn-Mogens Šmejda Haug Sulphide Silver Pattern and Cytoarchitectonics of Parahippocampal Areas in the Rat , 1976, Advances in Anatomy, Embryology and Cell Biology / Ergebnisse der Anatomie und Entwicklungsgeschichte / Revues d’anatomie et de morphologie expérimentale.

[15]  Kathleen J. Roney,et al.  Dendritic bundles: Survey of anatomical experiments and physiological theories , 1979, Brain Research Reviews.

[16]  M. Wong-Riley Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.

[17]  A. L. Humphrey,et al.  Anatomical banding of intrinsic connections in striate cortex of tree shrews (Tupaia glis) , 1982, The Journal of comparative neurology.

[18]  J. Lund,et al.  Intrinsic laminar lattice connections in primate visual cortex , 1983, The Journal of comparative neurology.

[19]  T. Wiesel,et al.  Clustered intrinsic connections in cat visual cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  H. Stephan Evolutionary trends in limbic structures , 1983, Neuroscience & Biobehavioral Reviews.

[21]  L. Sternberger,et al.  Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[22]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[23]  L. Swanson The Rat Brain in Stereotaxic Coordinates, George Paxinos, Charles Watson (Eds.). Academic Press, San Diego, CA (1982), vii + 153, $35.00, ISBN: 0 125 47620 5 , 1984 .

[24]  D. Amaral,et al.  The distribution of acetylcholinesterase in the hippocampal formation of the monkey , 1984, The Journal of comparative neurology.

[25]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[26]  M. N. Wallace,et al.  Spatial relationship of NADPH-diaphorase and acetylcholinesterase lattices in the rat and mouse superior colliculus , 1986, Neuroscience.

[27]  D. Amaral,et al.  The entorhinal cortex of the monkey: III. Subcortical afferents , 1987, The Journal of comparative neurology.

[28]  A. Peters,et al.  The neuronal composition of area 17 of rat visual cortex. IV. The organization of pyramidal cells , 1987, The Journal of comparative neurology.

[29]  D. Amaral,et al.  The entorhinal cortex of the monkey: I. Cytoarchitectonic organization , 1987, The Journal of comparative neurology.

[30]  K. Mori,et al.  A columnar arrangement of dendritic processes of entorhinal cortex neurons revealed by a monoclonal antibody , 1989, Brain Research.

[31]  R. Llinás,et al.  Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II , 1989, Nature.

[32]  B. Berger,et al.  Neurotensin innervation of the human cerebral cortex: lack of colocalization with catecholamines , 1990, Brain Research.

[33]  A. Norman,et al.  Monoclonal antibodies directed against the calcium binding protein Calbindin D-28k. , 1990, Cell calcium.

[34]  L. Schmued A rapid, sensitive histochemical stain for myelin in frozen brain sections. , 1990, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[35]  E. Leise Modular construction of nervous systems: A basic principle of design for invertebrates and vertebrates , 1990, Brain Research Reviews.

[36]  L. Slomianka,et al.  Distribution of acetylcholinesterase in the hippocampal region of the mouse: I. Entorhinal area, parasubiculum, retrosplenial area, and Presubiculum , 1991, The Journal of comparative neurology.

[37]  D. Lewis,et al.  Heterogeneity of layer II neurons in human entorhinal cortex , 1992, The Journal of comparative neurology.

[38]  M. Wong-Riley,et al.  Entorhinal cortex of the human, monkey, and rat: Metabolic map as revealed by cytochrome oxidase , 1992, The Journal of comparative neurology.

[39]  U. Thole,et al.  Volumes of the cytoarchitectonic areas in the rat cerebral cortex. , 1992, Journal fur Hirnforschung.

[40]  D. Purves,et al.  Growth of the rat somatic sensory cortex and its constituent parts during postnatal development , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  D. Lewis,et al.  Nonphosphorylated neurofilament protein and calbindin immunoreactivity in layer III pyramidal neurons of human neocortex. , 1992, Cerebral cortex.

[42]  J. B. Levitt,et al.  Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. , 1993, Cerebral cortex.

[43]  L. Slomianka,et al.  Distribution of acetylcholinesterase in the hippocampal region of the mouse. III. The area dentata , 1993, The Journal of comparative neurology.

[44]  A. Alonso,et al.  Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. , 1993, Journal of neurophysiology.

[45]  R. Insausti Comparative anatomy of the entorhinal cortex and hippocampus in mammals , 1993, Hippocampus.

[46]  L. Jacobs,et al.  THE EVOLUTION OF MURINE RODENTS IN ASIA , 1994 .

[47]  Chuangjiu Li,et al.  Rodent and Lagomorph families of Asian origins and diversification : proceedings of Workshop WC-2, 29th International Geological Congress, Kyoto, Japan , 1994 .

[48]  Y. Kubota,et al.  Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex , 1994, Brain Research.

[49]  M. Akil,et al.  The distribution of tyrosine hydroxylase-immunoreactive fibers in the human entorhinal cortex , 1994, Neuroscience.

[50]  R. Insausti,et al.  The human entorhinal cortex: A cytoarchitectonic analysis , 1995, The Journal of comparative neurology.

[51]  H. Braak,et al.  Staging of alzheimer's disease-related neurofibrillary changes , 1995, Neurobiology of Aging.

[52]  R. S. Waters,et al.  Organization and Development of the Forepaw Representation in Forepaw Barrel Subfield in Somatosensory Cortex of Rat , 1995 .

[53]  G. V. Van Hoesen,et al.  Entorhinal cortex modules of the human brain , 1996, The Journal of comparative neurology.

[54]  T. Kosaka,et al.  The distribution of two calcium binding proteins, calbindin D-28K and parvalbumin, in the entorhinal cortex of the adult mouse , 1996, Neuroscience Research.

[55]  D. Peterson,et al.  Fibroblast growth factor-2 protects entorhinal layer II glutamatergic neurons from axotomy-induced death , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  B. Pakkenberg,et al.  Neocortical neuron number in humans: Effect of sex and age , 1997, The Journal of comparative neurology.

[57]  O. Garaschuk,et al.  Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[58]  H. Soininen,et al.  Distribution of parvalbumin‐, calretinin‐, and calbindin‐D28k–immunoreactive neurons and fibers in the human entorhinal cortex , 1997, The Journal of comparative neurology.

[59]  J. Hanke,et al.  Pigmentarchitectonic subfields of the entorhinal region as revealed in tangential sections. , 1997, Journal fur Hirnforschung.

[60]  J. DeFelipe Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex , 1997, Journal of Chemical Neuroanatomy.

[61]  R. Saunders,et al.  The entorhinal cortex: an examination of cyto- and myeloarchitectonic organization in humans. , 1997, Cerebral cortex.

[62]  H. Uylings,et al.  An optimal antigen retrieval method suitable for different antibodies on human brain tissue stored for several years in formaldehyde fixative , 1997, Journal of Neuroscience Methods.

[63]  B. Hyman,et al.  Aβ Deposition Is Associated with Neuropil Changes, but not with Overt Neuronal Loss in the Human Amyloid Precursor Protein V717F (PDAPP) Transgenic Mouse , 1997, The Journal of Neuroscience.

[64]  A. Alonso,et al.  Morphological characteristics of layer II projection neurons in the rat medial entorhinal cortex , 1997, Hippocampus.

[65]  H. Soininen,et al.  MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. , 1998, AJNR. American journal of neuroradiology.

[66]  M. West,et al.  Total number of neurons in the layers of the human entorhinal cortex , 1998, Hippocampus.

[67]  S. Tsuji Electron microscopic localization of acetylcholinesterase activity in the central nervous system: chemical basis of a catalytic activity of Hatchett's brown (cupric ferrocyanide) precipitate revealed by 3,3'-diaminobenzidine. , 1998, Folia histochemica et cytobiologica.

[68]  J. Kaas,et al.  A histologically visible representation of the fingers and palm in primate area 3b and its immutability following long-term deafferentations. , 1998, Cerebral cortex.

[69]  L. Krubitzer,et al.  Modular Subdivisions of Dolphin Insular Cortex: Does Evolutionary History Repeat Itself? , 1998, Journal of Cognitive Neuroscience.

[70]  S. Guirado,et al.  Calbindin‐D28k in cortical regions of the lizard Psammodromus algirus , 1999, The Journal of comparative neurology.

[71]  Vivien A. Casagrande,et al.  Biophysics of Computation: Information Processing in Single Neurons , 1999 .

[72]  G. V. Van Hoesen,et al.  The Parahippocampal Gyrus in Alzheimer's Disease: Clinical and Preclinical Neuroanatomical Correlates , 2000, Annals of the New York Academy of Sciences.

[73]  R. Williams,et al.  Mapping genes that modulate mouse brain development: a quantitative genetic approach. , 2000, Results and problems in cell differentiation.

[74]  T. van Groen Entorhinal cortex of the mouse: Cytoarchitectonical organization , 2001, Hippocampus.

[75]  P. Waddell,et al.  A phylogenetic foundation for comparative mammalian genomics. , 2001, Genome informatics. International Conference on Genome Informatics.

[76]  Modular organization of the monkey presubiculum , 2001, Experimental Brain Research.

[77]  勇一 作村,et al.  Biophysics of Computation , 2001 .

[78]  G. Chevalier,et al.  The fine organization of nigro-collicular channels with additional observations of their relationships with acetylcholinesterase in the rat , 2001, Neuroscience.

[79]  T. van Groen,et al.  Entorhinal cortex of the mouse: Cytoarchitectonical organization , 2001, Hippocampus.

[80]  R. Burwell,et al.  Neuron number in the parahippocampal region is preserved in aged rats with spatial learning deficits. , 2002, Cerebral cortex.

[81]  Lawrence C. Sincich,et al.  Pale cytochrome oxidase stripes in V2 receive the richest projection from macaque striate cortex , 2002, The Journal of comparative neurology.

[82]  M. A. Carreira-Perpiñán,et al.  Cortical Columns , 2002 .

[83]  W. Suzuki,et al.  Distribution of calbindin D‐28k in the entorhinal, perirhinal, and parahippocampal cortices of the macaque monkey , 2002, The Journal of comparative neurology.

[84]  K. Rockland,et al.  Honeycomb-Like Mosaic at the Border of Layers 1 and 2 in the Cerebral Cortex , 2003, The Journal of Neuroscience.

[85]  D. L. Adams,et al.  Capricious expression of cortical columns in the primate brain , 2003, Nature Neuroscience.

[86]  Paul Leonard Gabbott Radial organisation of neurons and dendrites in human cortical areas 25, 32, and 32′ , 2003, Brain Research.

[87]  C. Redies,et al.  Small‐scale pattern formation in a cortical area of the embryonic chicken telencephalon , 2003, The Journal of comparative neurology.

[88]  K. Rockland,et al.  Some thoughts on cortical minicolumns , 2004, Experimental Brain Research.

[89]  H. Braak Zur Pigmentarchitektonik der Großhirnrinde des Menschen , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[90]  W. Singer,et al.  Development of horizontal intrinsic connections in cat striate cortex , 2004, Experimental Brain Research.

[91]  G. Orban,et al.  Comparative mapping of higher visual areas in monkeys and humans , 2004, Trends in Cognitive Sciences.

[92]  P. Hof,et al.  Hemispheric asymmetry, modular variability and age-related changes in the human entorhinal cortex , 2005, Neuroscience.

[93]  D. Lieberman,et al.  Interpreting the past : essays on human, primate, and mammal evolution in honor of David Pilbeam , 2005 .

[94]  Daniel L Adams,et al.  The cortical column: a structure without a function , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[95]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[96]  K. Schilling,et al.  Characterization of the neuronal marker NeuN as a multiply phosphorylated antigen with discrete subcellular localization , 2005, Journal of neuroscience research.

[97]  M. Stoltenberg,et al.  Silver enhancement of quantum dots resulting from (1) metabolism of toxic metals in animals and humans, (2) in vivo, in vitro and immersion created zinc-sulphur/zinc-selenium nanocrystals, (3) metal ions liberated from metal implants and particles. , 2006, Progress in histochemistry and cytochemistry.

[98]  M. Hasselmo The role of acetylcholine in learning and memory , 2006, Current Opinion in Neurobiology.

[99]  Torkel Hafting,et al.  Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex , 2006, Science.

[100]  L. Medina,et al.  Calcium‐binding proteins, neuronal nitric oxide synthase, and GABA help to distinguish different pallial areas in the developing and adult chicken. I. Hippocampal formation and hyperpallium , 2006, The Journal of comparative neurology.

[101]  K. Catania,et al.  Touching on somatosensory specializations in mammals , 2006, Current Opinion in Neurobiology.

[102]  K. Jeffery,et al.  Experience-dependent rescaling of entorhinal grids , 2007, Nature Neuroscience.

[103]  B. Hallström,et al.  Phylogenomic data analyses provide evidence that Xenarthra and Afrotheria are sister groups. , 2007, Molecular biology and evolution.

[104]  N. Schuurman,et al.  Deprivation Indices, Population Health and Geography: An Evaluation of the Spatial Effectiveness of Indices at Multiple Scales , 2007, Journal of Urban Health.

[105]  Tom H. Pringle,et al.  Molecular and Genomic Data Identify the Closest Living Relative of Primates , 2007, Science.

[106]  K. Rockland,et al.  Unusual patch-matrix organization in the retrosplenial cortex of the reeler mouse and Shaking rat Kawasaki. , 2008, Cerebral cortex.

[107]  M. Fyhn,et al.  Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex , 2008, Hippocampus.

[108]  T. Hafting,et al.  Grid cells in mice , 2008, Hippocampus.

[109]  Stan Openshaw,et al.  Modifiable Areal Unit Problem , 2008, Encyclopedia of GIS.

[110]  G. Paxinos,et al.  Chemoarchitectonic Atlas of the Rat Brain , 2008 .

[111]  D. Amaral,et al.  The Hippocampal Formation , 2009 .

[112]  Masahito Watanabe,et al.  IN MICE , 2009 .

[113]  I. Soltesz,et al.  Target-selective GABAergic control of entorhinal cortex output , 2010, Nature Neuroscience.

[114]  Christian F. Doeller,et al.  Evidence for grid cells in a human memory network , 2010, Nature.

[115]  D. K. Mwangi,et al.  The entorhinal cortex of the Megachiroptera: a comparative study of Wahlberg’s epauletted fruit bat and the straw-coloured fruit bat , 2010, Brain Structure and Function.

[116]  Edvard I Moser,et al.  Development of the Spatial Representation System in the Rat , 2010, Science.

[117]  Kathleen S. Rockland,et al.  Five Points on Columns , 2010, Front. Neuroanat..

[118]  Kevan A. C. Martin,et al.  Whose Cortical Column Would that Be? , 2010, Front. Neuroanat..

[119]  H. S. Meyer,et al.  Number and Laminar Distribution of Neurons in a Thalamocortical Projection Column of Rat Vibrissal Cortex , 2010, Cerebral cortex.

[120]  P. Manger,et al.  Immunohistochemical parcellation of the ferret (Mustela putorius) visual cortex reveals substantial homology with the cat (Felis catus) , 2010, The Journal of comparative neurology.

[121]  D. B. Leitch,et al.  Neuron densities vary across and within cortical areas in primates , 2010, Proceedings of the National Academy of Sciences.

[122]  Charlotte N. Boccara,et al.  Grid cells in pre- and parasubiculum , 2010, Nature Neuroscience.

[123]  D. Coppola,et al.  Universality in the Evolution of Orientation Columns in the Visual Cortex , 2010, Science.

[124]  Ashley N. Linder,et al.  The Spatial Periodicity of Grid Cells Is Not Sustained During Reduced Theta Oscillations , 2011, Science.

[125]  Trygve B. Leergaard,et al.  Digital Atlas of Anatomical Subdivisions and Boundaries of the Rat Hippocampal Region , 2010, Front. Neuroinform..

[126]  Erick Jorge Canales-Rodríguez,et al.  Brain hemispheric structural efficiency and interconnectivity rightward asymmetry in human and nonhuman primates. , 2011, Cerebral cortex.

[127]  M. Brecht,et al.  Microcircuits of Functionally Identified Neurons in the Rat Medial Entorhinal Cortex , 2011, Neuron.

[128]  Mark P. Brandon,et al.  Reduction of Theta Rhythm Dissociates Grid Cell Spatial Periodicity from Directional Tuning , 2011, Science.

[129]  M. Yartsev,et al.  Grid cells without theta oscillations in the entorhinal cortex of bats , 2011, Nature.

[130]  May-Britt Moser,et al.  The entorhinal grid map is discretized , 2012, Nature.

[131]  Nathaniel J. Killian,et al.  A map of visual space in the primate entorhinal cortex , 2012, Nature.

[132]  J. Kaas Evolution of columns, modules, and domains in the neocortex of primates , 2012, Proceedings of the National Academy of Sciences.

[133]  J. O’Keefe,et al.  Grid cell firing patterns signal environmental novelty by expansion , 2012, Proceedings of the National Academy of Sciences.

[134]  J. O’Keefe,et al.  Neural Representations of Location Composed of Spatially Periodic Bands , 2012, Science.

[135]  P. Gaspar,et al.  Insights into the complex influence of 5‐HT signaling on thalamocortical axonal system development , 2012, The European journal of neuroscience.

[136]  M. Brecht,et al.  Cytoarchitecture, areas, and neuron numbers of the Etruscan Shrew cortex , 2012, The Journal of comparative neurology.

[137]  N. Ichinohe Small-Scale Module of the Rat Granular Retrosplenial Cortex: An Example of the Minicolumn-Like Structure of the Cerebral Cortex , 2011, Front. Neuroanat..

[138]  D. Coppola,et al.  Response to Comment on “Universality in the Evolution of Orientation Columns in the Visual Cortex“ , 2012, Science.

[139]  H. S. Meyer,et al.  Cellular organization of cortical barrel columns is whisker-specific , 2013, Proceedings of the National Academy of Sciences.

[140]  John L.R. Rubenstein,et al.  Neural circuit development and function in the healthy and diseased brain , 2013 .

[141]  A. Simmons,et al.  Entorhinal cortex thickness predicts cognitive decline in Alzheimer's disease. , 2013, Journal of Alzheimer's disease : JAD.

[142]  I. Fried,et al.  Direct recordings of grid-like neuronal activity in human spatial navigation , 2013, Nature Neuroscience.

[143]  Ehren L. Newman,et al.  Cholinergic Blockade Reduces Theta-Gamma Phase Amplitude Coupling and Speed Modulation of Theta Frequency Consistent with Behavioral Effects on Encoding , 2013, The Journal of Neuroscience.

[144]  Z. Molnár Chapter 7 – Cortical Columns , 2013 .

[145]  M. Brecht,et al.  An isomorphic mapping hypothesis of the grid representation , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[146]  M. Brecht,et al.  Cellular, columnar and modular organization of spatial representations in medial entorhinal cortex , 2014, Current Opinion in Neurobiology.

[147]  Dori Derdikman,et al.  Space,Time and Memory in the Hippocampal Formation , 2014, Springer Vienna.

[148]  K. Zilles,et al.  Distribution of neurotransmitter receptors and zinc in the pigeon (Columba livia) hippocampal formation: A basis for further comparison with the mammalian hippocampus , 2014, The Journal of comparative neurology.

[149]  M. Brecht,et al.  Grid-Layout and Theta-Modulation of Layer 2 Pyramidal Neurons in Medial Entorhinal Cortex , 2014, Science.

[150]  S. Tonegawa,et al.  Island Cells Control Temporal Association Memory , 2014, Science.

[151]  N. Ulanovsky,et al.  Hippocampal Neurophysiology Across Species , 2014 .

[152]  James G. Heys,et al.  The Functional Micro-organization of Grid Cells Revealed by Cellular-Resolution Imaging , 2014, Neuron.

[153]  M. Brecht,et al.  Pyramidal and Stellate Cell Specificity of Grid and Border Representations in Layer 2 of Medial Entorhinal Cortex , 2014, Neuron.

[154]  L. Medina,et al.  Combinatorial expression of Lef1, Lhx2, Lhx5, Lhx9, Lmo3, Lmo4, and Prox1 helps to identify comparable subdivisions in the developing hippocampal formation of mouse and chicken , 2014, Front. Neuroanat..

[155]  Trygve B. Leergaard,et al.  A three‐plane architectonic atlas of the rat hippocampal region , 2015, Hippocampus.