Position Tracking for Virtual Reality Using Commodity WiFi

Today, experiencing virtual reality (VR) is a cumbersome experience which either requires dedicated infrastructure like infrared cameras to track the headset and hand-motion controllers (e.g. Oculus Rift, HTC Vive), or provides only 3-DoF (Degrees of Freedom) tracking which severely limits the user experience (e.g. Samsung Gear VR). To truly enable VR everywhere, we need position tracking to be available as a ubiquitous service. This paper describes WiCapture, a novel approach which leverages commodity WiFi infrastructure, which is ubiquitous today, for tracking purposes. We prototyped WiCapture using off-the-shelf WiFi radios and demonstrated that it achieves an accuracy of 0.88 cm compared to sophisticated infrared-based tracking systems like the Oculus Rift, while providing much higher range, resistance to occlusion, ubiquity and ease of deployment.

[1]  F. Raab,et al.  Magnetic Position and Orientation Tracking System , 1979, IEEE Transactions on Aerospace and Electronic Systems.

[2]  John J. Leonard,et al.  Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age , 2016, IEEE Transactions on Robotics.

[3]  H. Dawes,et al.  IMU: inertial sensing of vertical CoM movement. , 2009, Journal of biomechanics.

[4]  Mo Li,et al.  xD-track: leveraging multi-dimensional information for passive wi-fi tracking , 2016, HotWireless@MobiCom.

[5]  Sachin Katti,et al.  Position Tracking for Virtual Reality Using Commodity WiFi , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Sven Behnke,et al.  Multi-frequency Phase Unwrapping for Time-of-Flight cameras , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  G.B. Giannakis,et al.  Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks , 2005, IEEE Signal Processing Magazine.

[8]  Michael Harrington,et al.  Constellation: a wide-range wireless motion-tracking system for augmented reality and virtual set applications , 1998, SIGGRAPH.

[9]  Ramesh Raskar,et al.  A light transport model for mitigating multipath interference in Time-of-flight sensors , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Wolfgang Heidrich,et al.  Low-budget transient imaging using photonic mixer devices , 2013, ACM Trans. Graph..

[11]  Daniel Cremers,et al.  Direct Sparse Odometry , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Lei Yang,et al.  Tagoram: real-time tracking of mobile RFID tags to high precision using COTS devices , 2014, MobiCom.

[13]  Moustafa Youssef,et al.  The Horus WLAN location determination system , 2005, MobiSys '05.

[14]  Seung Jun Baek,et al.  Application of precise indoor position tracking to immersive virtual reality with translational movement support , 2016, Multimedia Tools and Applications.

[15]  Stergios I. Roumeliotis,et al.  C-KLAM: Constrained keyframe-based localization and mapping , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[16]  Jie Xiong,et al.  ToneTrack: Leveraging Frequency-Agile Radios for Time-Based Indoor Wireless Localization , 2015, MobiCom.

[17]  Dina Katabi,et al.  RF-IDraw: virtual touch screen in the air using RF signals , 2014, S3 '14.

[18]  Paul Congdon,et al.  Avoiding multipath to revive inbuilding WiFi localization , 2013, MobiSys '13.

[19]  Parth H. Pathak,et al.  Your AP knows how you move: fine-grained device motion recognition through WiFi , 2014, HotWireless@MobiCom.

[20]  Frank Biocca,et al.  A Survey of Position Trackers , 1992, Presence: Teleoperators & Virtual Environments.

[21]  Ramesh Raskar,et al.  Coded time of flight cameras , 2013, ACM Trans. Graph..

[22]  앨런 예이츠,et al.  Positional tracking systems and methods , 2015 .

[23]  Sachin Katti,et al.  SpotFi: Decimeter Level Localization Using WiFi , 2015, SIGCOMM.

[24]  Arogyaswami Paulraj,et al.  Estimation of multipath parameters in wireless communications , 1998, IEEE Trans. Signal Process..

[25]  Paramvir Bahl,et al.  RADAR: an in-building RF-based user location and tracking system , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[26]  Ramesh Raskar,et al.  Resolving Multi-path Interference in Time-of-Flight Imaging via Modulation Frequency Diversity and Sparse Regularization , 2014, Optics letters.

[27]  Qionghai Dai,et al.  Fourier Analysis on Transient Imaging with a Multifrequency Time-of-Flight Camera , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Dan Ionescu,et al.  Full-body tracking using a sensor array system and laser-based sweeps , 2016, 2016 IEEE Symposium on 3D User Interfaces (3DUI).

[29]  Raghuraman Mudumbai,et al.  Fundamental limits on phase and frequency tracking and estimation in drifting oscillators , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[30]  Greg Welch,et al.  The HiBall Tracker: high-performance wide-area tracking for virtual and augmented environments , 1999, VRST '99.

[31]  Michael J. Cree,et al.  Understanding and Ameliorating Non-Linear Phase and Amplitude Responses in AMCW Lidar , 2011, Remote. Sens..

[32]  Swarun Kumar,et al.  Accurate indoor localization with zero start-up cost , 2014, MobiCom.

[33]  Ramesh Raskar,et al.  Macroscopic Interferometry: Rethinking Depth Estimation with Frequency-Domain Time-of-Flight , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Kyu-Han Kim,et al.  SAIL: single access point-based indoor localization , 2014, MobiSys.

[35]  David Wetherall,et al.  Tool release: gathering 802.11n traces with channel state information , 2011, CCRV.

[36]  Ronald Azuma,et al.  Tracking a head-mounted display in a room-sized environment with head-mounted cameras , 1990, Defense, Security, and Sensing.

[37]  Sachin Katti,et al.  PinPoint: Localizing Interfering Radios , 2013, NSDI.

[38]  Jie Xiong,et al.  ArrayTrack: A Fine-Grained Indoor Location System , 2011, NSDI.

[39]  Ramesh Raskar,et al.  Estimating Motion and size of moving non-line-of-sight objects in cluttered environments , 2011, CVPR 2011.

[40]  Venkata N. Padmanabhan,et al.  Indoor localization without the pain , 2010, MobiCom.

[41]  Ramesh Raskar,et al.  Prakash: lighting aware motion capture using photosensing markers and multiplexed illuminators , 2007, ACM Trans. Graph..

[42]  Rob Miller,et al.  3D Tracking via Body Radio Reflections , 2014, NSDI.

[43]  Luis E. Ortiz,et al.  WiGEM: a learning-based approach for indoor localization , 2011, CoNEXT '11.

[44]  Philip A. Chou,et al.  SPUMIC: Simultaneous phase unwrapping and multipath interference cancellation in time-of-flight cameras using spectral methods , 2013, 2013 IEEE International Conference on Multimedia and Expo (ICME).

[45]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[46]  P. Tavella,et al.  The clock model and its relationship with the Allan and related variances , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[47]  Shyamnath Gollakota,et al.  Wi-Fi Gesture Recognition on Existing Devices , 2014, ArXiv.

[48]  Frédo Durand,et al.  Capturing the human figure through a wall , 2015, ACM Trans. Graph..

[49]  Pinhas Ben-Tzvi,et al.  Spatial Object Tracking System Based on Linear Optical Sensor Arrays , 2016, IEEE Sensors Journal.

[50]  Klaus Dorfmüller,et al.  Robust tracking for augmented reality using retroreflective markers , 1999, Comput. Graph..

[51]  Michael J. Cree,et al.  Separating true range measurements from multi-path and scattering interference in commercial range cameras , 2011, Electronic Imaging.

[52]  Venkata N. Padmanabhan,et al.  Centaur: locating devices in an office environment , 2012, Mobicom '12.

[53]  Swarun Kumar,et al.  Decimeter-Level Localization with a Single WiFi Access Point , 2016, NSDI.

[54]  Matthew O'Toole,et al.  Temporal frequency probing for 5D transient analysis of global light transport , 2014, ACM Trans. Graph..

[55]  Mirko Schmidt,et al.  SRA: Fast Removal of General Multipath for ToF Sensors , 2014, ECCV.

[56]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .