Phase Unwrapping via Graph Cuts

Phase unwrapping is the inference of absolute phase from modulo-2pi phase. This paper introduces a new energy minimization framework for phase unwrapping. The considered objective functions are first-order Markov random fields. We provide an exact energy minimization algorithm, whenever the corresponding clique potentials are convex, namely for the phase unwrapping classical Lp norm, with pges1. Its complexity is KT(n,3n), where K is the length of the absolute phase domain measured in 2pi units and T(n,m) is the complexity of a max-flow computation in a graph with n nodes and m edges. For nonconvex clique potentials, often used owing to their discontinuity preserving ability, we face an NP-hard problem for which we devise an approximate solution. Both algorithms solve integer optimization problems by computing a sequence of binary optimizations, each one solved by graph cut techniques. Accordingly, we name the two algorithms PUMA, for phase unwrapping max-flow/min-cut. A set of experimental results illustrates the effectiveness of the proposed approach and its competitiveness in comparison with state-of-the-art phase unwrapping algorithms

[1]  Dennis C. Ghiglia,et al.  Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software , 1998 .

[2]  José Dias,et al.  The Z π M Algorithm for Interferometric Image Reconstruction in SAR / SAS , 2001 .

[3]  Olov Marklund An anisotropic evolution formulation applied in 2-D unwrapping of discontinuous phase surfaces , 2001, IEEE Trans. Image Process..

[4]  C. Werner,et al.  Satellite radar interferometry: Two-dimensional phase unwrapping , 1988 .

[5]  Sudhakar M. Pandit,et al.  Data-dependent systems methodology for noise-insensitive phase unwrapping in laser interferometric surface characterization , 1994 .

[6]  Hiroshi Ishikawa,et al.  Exact Optimization for Markov Random Fields with Convex Priors , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Dimitri P. Bertsekas,et al.  Network optimization : continuous and discrete models , 1998 .

[8]  Andrew Blake,et al.  Comparison of the Efficiency of Deterministic and Stochastic Algorithms for Visual Reconstruction , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Thomas J. Flynn,et al.  TWO-DIMENSIONAL PHASE UNWRAPPING WITH MINIMUM WEIGHTED DISCONTINUITY , 1997 .

[10]  R. Goldstein,et al.  Topographic mapping from interferometric synthetic aperture radar observations , 1986 .

[11]  C. W. Chen,et al.  Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Wei Xu,et al.  A region-growing algorithm for InSAR phase unwrapping , 1999, IEEE Trans. Geosci. Remote. Sens..

[14]  L. C. Graham,et al.  Synthetic interferometer radar for topographic mapping , 1974 .

[15]  Dorit S. Hochbaum,et al.  An efficient algorithm for image segmentation, Markov random fields and related problems , 2001, JACM.

[16]  M. B. Dias,et al.  SAR Images: A Stochastic Nonlinear Filtering Approach , 2000 .

[17]  Bruno Quesson,et al.  Magnetic resonance temperature imaging for guidance of thermotherapy , 2000, Journal of magnetic resonance imaging : JMRI.

[18]  José M. Bioucas-Dias,et al.  Phase unwrapping: a new max-flow/min-cut based approach , 2005, IEEE International Conference on Image Processing 2005.

[19]  K Itoh,et al.  Analysis of the phase unwrapping algorithm. , 1982, Applied optics.

[20]  Andrew V. Goldberg,et al.  A new approach to the maximum flow problem , 1986, STOC '86.

[21]  P. Jezzard,et al.  Correction for geometric distortion in echo planar images from B0 field variations , 1995, Magnetic resonance in medicine.

[22]  Curtis W. Chen Statistical-cost network-flow approaches to two-dimensional phase unwrapping for radar interferometry , 2001 .

[23]  Mariano Rivera,et al.  Quadratic regularization functionals for phase unwrapping , 1995 .

[24]  Joydeep Ghosh,et al.  Two-dimensional phase unwrapping using neural networks , 2000, 4th IEEE Southwest Symposium on Image Analysis and Interpretation.

[25]  Søren Nørvang Madsen,et al.  Topographic mapping using radar interferometry: processing techniques , 1993, IEEE Trans. Geosci. Remote. Sens..

[26]  C.F.N. Cowan,et al.  Interferometric synthetic aperture sonar for high resolution 3-D mapping of the seabed , 1997 .

[27]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[28]  Stuart Geman,et al.  Statistical methods for tomographic image reconstruction , 1987 .

[29]  Stan Z. Li,et al.  Markov Random Field Modeling in Computer Vision , 1995, Computer Science Workbench.

[30]  Louis A. Romero,et al.  Minimum Lp-norm two-dimensional phase unwrapping , 1996 .

[31]  Mihai Datcu,et al.  Multiscale Bayesian height estimation from InSAR using a fractal prior , 1998, Remote Sensing.

[32]  M Servin,et al.  Fast algorithm for integrating inconsistent gradient fields. , 1997, Applied optics.

[33]  Kazuo Murota,et al.  Discrete convex analysis , 1998, Math. Program..

[34]  José M. Bioucas-Dias,et al.  Discontinuity Preserving Phase Unwrapping Using Graph Cuts , 2005, EMMCVPR.

[35]  Louis J. Cutrona,et al.  Comparison of sonar system performance achievable using synthetic‐aperture techniques with the performance achievable by more conventional means , 1975 .

[36]  Joseph M. Francos,et al.  Model based phase unwrapping of 2-D signals , 1996, IEEE Trans. Signal Process..

[37]  Brendan J. Frey,et al.  Unwrapping of MR phase images using a Markov random field model , 2006, IEEE Transactions on Medical Imaging.

[38]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[39]  G. Nico Phase reconstruction via simulated tempering , 2001 .

[40]  Mariano Rivera,et al.  Half-quadratic cost functions for phase unwrapping. , 2004, Optics letters.

[41]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  José M. N. Leitão,et al.  Absolute phase image reconstruction: a stochastic nonlinear filtering approach , 1998, IEEE Trans. Image Process..

[43]  R. Zabih,et al.  Efficient Graph-Based Energy Minimization Methods in Computer Vision , 1999 .

[44]  José M. N. Leitão,et al.  The ZπM algorithm: a method for interferometric image reconstruction in SAR/SAS , 2002, IEEE Trans. Image Process..

[45]  Charles V. Jakowatz,et al.  Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach , 1996 .

[46]  Vladimir Kolmogorov,et al.  An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision , 2004, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  Mark Hedley,et al.  A new two‐dimensional phase unwrapping algorithm for MRI images , 1992, Magnetic resonance in medicine.

[48]  Jérôme Darbon Composants logiciels et algorithmes de minimisation exacte d'énergies dédiées au traitement des images , 2005 .

[49]  Rudolf Stollberger,et al.  Automated unwrapping of MR phase images applied to BOLD MR‐venography at 3 Tesla , 2003, Journal of magnetic resonance imaging : JMRI.

[50]  Jérôme Darbon,et al.  Image Restoration with Discrete Constrained Total Variation Part I: Fast and Exact Optimization , 2006, Journal of Mathematical Imaging and Vision.

[51]  Mario Costantini,et al.  A novel phase unwrapping method based on network programming , 1998, IEEE Trans. Geosci. Remote. Sens..

[52]  P. Lauterbur,et al.  Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance , 1973, Nature.

[53]  A.V. Oppenheim,et al.  The importance of phase in signals , 1980, Proceedings of the IEEE.

[54]  Pablo A. Ferrari,et al.  Reconstruction of Gray-Scale Images , 2001 .

[55]  Louis A. Romero,et al.  Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods , 1994 .

[56]  Kazuo Murota,et al.  On Steepest Descent Algorithms for Discrete Convex Functions , 2003, SIAM J. Optim..

[57]  Mihai Datcu,et al.  Bayesian approaches to phase unwrapping: theoretical study , 2000, IEEE Trans. Signal Process..

[58]  David L. Fried,et al.  Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements , 1977 .

[59]  T. Hebert,et al.  A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors. , 1989, IEEE transactions on medical imaging.

[60]  Zhi-Pei Liang,et al.  A model-based method for phase unwrapping , 1996, IEEE Trans. Medical Imaging.

[61]  V. Kolmogorov Primal-dual Algorithm for Convex Markov Random Fields , 2005 .

[62]  Richard M. Leahy,et al.  An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[63]  Antonin Chambolle,et al.  Total Variation Minimization and a Class of Binary MRF Models , 2005, EMMCVPR.

[64]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[65]  N. M. Vaidya,et al.  Discontinuity preserving surface reconstruction through global optimization , 1995, Proceedings of International Symposium on Computer Vision - ISCV.