Evolving Artificial Neural Networks

Learning and evolution are two fundamental forms of adaptation. There has been a great interest in combining learning and evolution with artificial neural networks (ANN’s) in recent years. This paper: 1) reviews different combinations between ANN’s and evolutionary algorithms (EA’s), including using EA’s to evolve ANN connection weights, architectures, learning rules, and input features; 2) discusses different search operators which have been used in various EA’s; and 3) points out possible future research directions. It is shown, through a considerably large literature review, that combinations between ANN’s and EA’s can lead to significantly better intelligent systems than relying on ANN’s or EA’s alone.

[1]  J. Baldwin A New Factor in Evolution , 1896, The American Naturalist.

[2]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[3]  H. Akaike A new look at the statistical model identification , 1974 .

[4]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[5]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[6]  William A. Harris,et al.  [Development of the nervous system]. , 2000, Ceskoslovenska fysiologie.

[7]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[8]  James L. McClelland,et al.  James L. McClelland, David Rumelhart and the PDP Research Group, Parallel distributed processing: explorations in the microstructure of cognition . Vol. 1. Foundations . Vol. 2. Psychological and biological models . Cambridge MA: M.I.T. Press, 1987. , 1989, Journal of Child Language.

[9]  G. Edelman Neural Darwinism: The Theory Of Neuronal Group Selection , 1989 .

[10]  H. Szu,et al.  Nonconvex optimization by fast simulated annealing , 1987, Proceedings of the IEEE.

[11]  M. Dyer,et al.  Toward the Evolution of Symbols , 1987, ICGA.

[12]  Przemyslaw Prusinkiewicz,et al.  Developmental Models of Multicellular Organisms: A Computer Graphics Perspective , 1987, ALIFE.

[13]  John Maynard Smith,et al.  When learning guides evolution , 1987, Nature.

[14]  Aviv Bergman,et al.  BREEDING INTELLIGENT AUTOMATA. , 1987 .

[15]  Geoffrey E. Hinton,et al.  How Learning Can Guide Evolution , 1996, Complex Syst..

[16]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[17]  Michael C. Mozer,et al.  Skeletonization: A Technique for Trimming the Fat from a Network via Relevance Assessment , 1988, NIPS.

[18]  Robert A. Jacobs,et al.  Increased rates of convergence through learning rate adaptation , 1987, Neural Networks.

[19]  Lawrence Davis,et al.  Training Feedforward Neural Networks Using Genetic Algorithms , 1989, IJCAI.

[20]  Yamashita,et al.  Backpropagation algorithm which varies the number of hidden units , 1989 .

[21]  Thomas P. Caudell,et al.  Parametric Connectivity: Training of Constrained Networks using Genetic Algorithms , 1989, ICGA.

[22]  L. Darrell Whitley,et al.  The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best , 1989, ICGA.

[23]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[24]  Geoffrey E. Hinton Connectionist Learning Procedures , 1989, Artif. Intell..

[25]  Jim Antonisse,et al.  A New Interpretation of Schema Notation that Overtums the Binary Encoding Constraint , 1989, ICGA.

[26]  Peter Seitz,et al.  Minimum class entropy: A maximum information approach to layered networks , 1989, Neural Networks.

[27]  Yann LeCun,et al.  Optimal Brain Damage , 1989, NIPS.

[28]  Peter M. Todd,et al.  Designing Neural Networks using Genetic Algorithms , 1989, ICGA.

[29]  David H. Sharp,et al.  Scaling, machine learning, and genetic neural nets , 1989 .

[30]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[31]  L. Darrell Whitley,et al.  Genetic algorithms and neural networks: optimizing connections and connectivity , 1990, Parallel Comput..

[32]  Hiroaki Kitano,et al.  Designing Neural Networks Using Genetic Algorithms with Graph Generation System , 1990, Complex Syst..

[33]  Richard Lippmann,et al.  Using Genetic Algorithms to Improve Pattern Classification Performance , 1990, NIPS.

[34]  Hiroaki Kitano,et al.  Empirical Studies on the Speed of Convergence of Neural Network Training Using Genetic Algorithms , 1990, AAAI.

[35]  Stewart W. Wilson Perceptron redux: emergence of structure , 1990 .

[36]  Richard K. Belew,et al.  Evolution, Learning, and Culture: Computational Metaphors for Adaptive Algorithms , 1990, Complex Syst..

[37]  Richard K. Belew,et al.  Evolving networks: using the genetic algorithm with connectionist learning , 1990 .

[38]  Larry J. Eshelman,et al.  Using genetic search to exploit the emergent behavior of neural networks , 1990 .

[39]  G. Mani,et al.  Learning by gradient descent in function space , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[40]  Marcus Frean,et al.  The Upstart Algorithm: A Method for Constructing and Training Feedforward Neural Networks , 1990, Neural Computation.

[41]  Geoffrey E. Hinton,et al.  A time-delay neural network architecture for isolated word recognition , 1990, Neural Networks.

[42]  Stefano Nolfi,et al.  Econets: Neural networks that learn in an environment , 1990 .

[43]  Rajarshi Das,et al.  Genetic reinforcement learning for neural networks , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[44]  D. Fogel System Identification Through Simulated Evolution: A Machine Learning Approach to Modeling , 1991 .

[45]  H. de Garis,et al.  GenNets: genetically programmed neural nets-using the genetic algorithm to train neural nets whose inputs and/or outputs vary in time , 1991 .

[46]  M.L. Gargano,et al.  An application of artificial neural networks and genetic algorithms to personnel selection in the financial industry , 1991, Proceedings First International Conference on Artificial Intelligence Applications on Wall Street.

[47]  N. Dodd,et al.  Optimisation of Neural-Network Structure using Genetic Techniques , 1991 .

[48]  Jan Paredis,et al.  The evolution of behavior: some experiments , 1991 .

[49]  David B. Fogel An information criterion for optimal neural network selection , 1991, IEEE Trans. Neural Networks.

[50]  Sio Carlos,et al.  Evolving a learning algorithm for the binary perceptron , 1991 .

[51]  Borut Maričić,et al.  GENETICALLY PROGRAMMED NEURAL NETWORK FOR SOLVING POLE-BALANCING PROBLEM , 1991 .

[52]  Michael Zaus,et al.  FUSION-TECHNOLOGY AND THE DESIGN OF EVOLUTIONARY MACHINES FOR NEURAL NETWORKS , 1991 .

[53]  David H. Ackley,et al.  Interactions between learning and evolution , 1991 .

[54]  William A. Phillips,et al.  A Biologically Supported Error-Correcting Learning Rule , 1991, Neural Computation.

[55]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[56]  Nicholas J. Radcliffe,et al.  Equivalence Class Analysis of Genetic Algorithms , 1991, Complex Syst..

[57]  Farid U. Dowla,et al.  Backpropagation Learning for Multilayer Feed-Forward Neural Networks Using the Conjugate Gradient Method , 1991, Int. J. Neural Syst..

[58]  David J. Chalmers,et al.  The Evolution of Learning: An Experiment in Genetic Connectionism , 1991 .

[59]  Robert F. Harrison,et al.  Optimization and training of feedforward neural networks by genetic algorithms , 1991 .

[60]  J. Utans,et al.  Selecting neural network architectures via the prediction risk: application to corporate bond rating prediction , 1991, Proceedings First International Conference on Artificial Intelligence Applications on Wall Street.

[61]  Brad Fullmer and Risto Miikkulainen Using Marker-Based Genetic Encoding Of Neural Networks To Evolve Finite-State Behaviour , 1991 .

[62]  A. P. Wieland,et al.  Evolving neural network controllers for unstable systems , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[63]  B. C. Deer,et al.  An exploration of genetic algorithms for the selection of connection weights in dynamical neural networks , 1991, Proceedings of the IEEE 1991 National Aerospace and Electronics Conference NAECON 1991.

[64]  John R. Koza,et al.  Genetic generation of both the weights and architecture for a neural network , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[65]  William M. Spears,et al.  A Study of Crossover Operators in Genetic Programming , 1991, ISMIS.

[66]  Byoung-Tak Zhang,et al.  Neural networks that teach themselves through genetic discovery of novel examples , 1991, [Proceedings] 1991 IEEE International Joint Conference on Neural Networks.

[67]  Yoshua Bengio,et al.  Learning a synaptic learning rule , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[68]  Jocelyn Sietsma,et al.  Creating artificial neural networks that generalize , 1991, Neural Networks.

[69]  Jan Torreele,et al.  Temporal Processing with Recurrent Networks: An Evolutionary Approach , 1991, ICGA.

[70]  Xin Yao,et al.  Optimization by Genetic Annealing , 1991 .

[71]  S. S. Wilson,et al.  Teaching network connectivity using simulated annealing on a massively parallel processor , 1991, Proc. IEEE.

[72]  Lalit M. Patnaik,et al.  Learning neural network weights using genetic algorithms-improving performance by search-space reduction , 1991, [Proceedings] 1991 IEEE International Joint Conference on Neural Networks.

[73]  Robert F. Port,et al.  Fractally configured neural networks , 1991, Neural Networks.

[74]  Gérard Dreyfus,et al.  Handwritten digit recognition by neural networks with single-layer training , 1992, IEEE Trans. Neural Networks.

[75]  Peter J. B. Hancock,et al.  Genetic algorithms and permutation problems: a comparison of recombination operators for neural net structure specification , 1992, [Proceedings] COGANN-92: International Workshop on Combinations of Genetic Algorithms and Neural Networks.

[76]  Oded Maimon,et al.  A Distributed Genetic Algorithm for Neural Network Design and Training , 1992, Complex Syst..

[77]  Alan V. Scherf,et al.  Training neural networks with genetic algorithms for target detection , 1992, Defense, Security, and Sensing.

[78]  L. Marti,et al.  Genetically generated neural networks-I: representational effects , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[79]  Edward E. DeRouin,et al.  Alternative learning methods for training neural network classifiers , 1992, Defense, Security, and Sensing.

[80]  Nicholas J. Radcliffe,et al.  Genetic neural networks on MIMD computers , 1992 .

[81]  Loke Soo Hsu,et al.  Input pattern encoding through generalized adaptive search , 1992, [Proceedings] COGANN-92: International Workshop on Combinations of Genetic Algorithms and Neural Networks.

[82]  J. G. Elias Genetic generation of connection patterns for a dynamic artificial neural network , 1992, [Proceedings] COGANN-92: International Workshop on Combinations of Genetic Algorithms and Neural Networks.

[83]  Stefan Bornholdt,et al.  General asymmetric neural networks and structure design by genetic algorithms: a learning rule for temporal patterns , 1992, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.

[84]  Andrew H. Fagg,et al.  Genetic programming approach to the construction of a neural network for control of a walking robot , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[85]  A. W. O'Neill,et al.  Genetic based training of two-layer, optoelectronic neural network , 1992 .

[86]  Z. Michalewicz,et al.  A modified genetic algorithm for optimal control problems , 1992 .

[87]  Yoshiaki Ichikawa,et al.  Neural network application for direct feedback controllers , 1992, IEEE Trans. Neural Networks.

[88]  Randall D. Beer,et al.  Evolving Dynamical Neural Networks for Adaptive Behavior , 1992, Adapt. Behav..

[89]  Frédéric Gruau,et al.  Genetic synthesis of Boolean neural networks with a cell rewriting developmental process , 1992, [Proceedings] COGANN-92: International Workshop on Combinations of Genetic Algorithms and Neural Networks.

[90]  D. Prados New learning algorithm for training multilayered neural networks that uses genetic-algorithm techniques , 1992 .

[91]  D. L. Prados,et al.  Training multilayered neural networks by replacing the least fit hidden neurons , 1992, Proceedings IEEE Southeastcon '92.

[92]  Wolfram Schiffmann,et al.  Synthesis and Performance Analysis of Multilayer Neural Network Architectures , 1992 .

[93]  R. E. Uhrig,et al.  Using genetic algorithms to select inputs for neural networks , 1992, [Proceedings] COGANN-92: International Workshop on Combinations of Genetic Algorithms and Neural Networks.

[94]  J. Heistermann,et al.  A mixed genetic approach to the optimization of neural controllers , 1992, CompEuro 1992 Proceedings Computer Systems and Software Engineering.

[95]  Kemal Oflazer,et al.  Genetic Synthesis of Unsupervised Learning Algorithms , 1993 .

[96]  Martin Fodslette Møller,et al.  A scaled conjugate gradient algorithm for fast supervised learning , 1993, Neural Networks.

[97]  David White,et al.  GANNet: A Genetic Algorithm for Optimizing Topology and Weights in Neural Network Design , 1993, IWANN.

[98]  L. Darrell Whitley,et al.  Adding Learning to the Cellular Development of Neural Networks: Evolution and the Baldwin Effect , 1993, Evolutionary Computation.

[99]  D.R. Hush,et al.  Progress in supervised neural networks , 1993, IEEE Signal Processing Magazine.

[100]  Enrique Alba,et al.  Full Automatic ANN Design: A Genetic Approach , 1993, IWANN.

[101]  Juan Julián Merelo Guervós,et al.  Optimization of a Competitive Learning Neural Network by Genetic Algorithms , 1993, IWANN.

[102]  Geoffrey E. Hinton,et al.  Glove-Talk: a neural network interface between a data-glove and a speech synthesizer , 1993, IEEE Trans. Neural Networks.

[103]  Somnath Mukhopadhyay,et al.  A polynomial time algorithm for the construction and training of a class of multilayer perceptrons , 1993, Neural Networks.

[104]  M. Narayanan,et al.  A Genetic Algorithm to Improve a Neural Network to Predict a Patient’s Response to Warfarin , 1993, Methods of Information in Medicine.

[105]  Xin Yao,et al.  A review of evolutionary artificial neural networks , 1993, Int. J. Intell. Syst..

[106]  Xin Yao,et al.  An empirical study of genetic operators in genetic algorithms , 1993, Microprocess. Microprogramming.

[107]  Jonathan Baxter The evolution of learning algorithms for artificial neural networks , 1993 .

[108]  Hans Christian Asminn Andersen,et al.  A constructive algorithm for a multilayer perceptron based on co-operative population concepts in genetic algorithms , 1993 .

[109]  Ah Chung Tsoi,et al.  A Constructive Algorithm for the Training of a Multilayer Perceptron Based on the Genetic Algorithm , 1993, Complex Syst..

[110]  James F. Frenzel,et al.  Training product unit neural networks with genetic algorithms , 1993, IEEE Expert.

[111]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[112]  Piero Mussio,et al.  Toward a Practice of Autonomous Systems , 1994 .

[113]  Xin Yao,et al.  The Evolution of Connectionist Networks , 1994 .

[114]  C. R. Chow,et al.  On the configuration of multilayered feedforward networks by an evolutionary process , 1994, Proceedings of 1994 37th Midwest Symposium on Circuits and Systems.

[115]  R. G. Hutchins Identifying nonlinear dynamic systems using neural nets and evolutionary programming , 1994, Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers.

[116]  Brahma Deo,et al.  Optimization of back propagation algorithm and GAS-assisted ANN models for hot metal desulphurization , 1994 .

[117]  Bruce A. Whitehead,et al.  Evolving space-filling curves to distribute radial basis functions over an input space , 1994, IEEE Trans. Neural Networks.

[118]  Michael Conrad,et al.  Combining evolution with credit apportionment: A new learning algorithm for neural nets , 1994, Neural Networks.

[119]  Daniel Gariglio,et al.  Identification and Control of a Simulated Distillation Plant using Connectionist and Evolutionary Techniques , 1994, Simul..

[120]  Una-May O'Reilly,et al.  Genetic Programming II: Automatic Discovery of Reusable Programs. , 1994, Artificial Life.

[121]  Steve G. Romaniuk Applying crossover operators to automatic neural network construction , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[122]  Hojjat Adeli,et al.  A parallel genetic/neural network learning algorithm for MIMD shared memory machines , 1994, IEEE Trans. Neural Networks.

[123]  David B. Fogel,et al.  An introduction to simulated evolutionary optimization , 1994, IEEE Trans. Neural Networks.

[124]  D. B. Fogel,et al.  Applying evolutionary programming to selected control problems , 1994 .

[125]  Donald E. Waagen,et al.  Evolving recurrent perceptrons for time-series modeling , 1994, IEEE Trans. Neural Networks.

[126]  Karl Sims,et al.  Evolving 3D Morphology and Behavior by Competition , 1994, Artificial Life.

[127]  Joos Vandewalle,et al.  Automatic design of cellular neural networks by means of genetic algorithms: finding a feature detector , 1994, Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94).

[128]  Abraham Kandel,et al.  Efficient Genetic Algorithms for Training Layered Feedback Neural Networks , 1994, Inf. Sci..

[129]  Y. Ikuno,et al.  Application of an Improved Genetic Algorithm to the Learning of Neural Networks , 1994 .

[130]  D. Parisi,et al.  Phenotypic plasticity in evolving neural networks , 1994, Proceedings of PerAc '94. From Perception to Action.

[131]  Risto Miikkulainen,et al.  Improving game-tree search with evolutionary neural networks , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[132]  Werner Kinnebrock,et al.  Accelerating the standard backpropagation method using a genetic approach , 1994, Neurocomputing.

[133]  Helge J. Ritter,et al.  Self-organizing maps: Local competition and evolutionary optimization , 1994, Neural Networks.

[134]  Frédéric Gruau,et al.  Automatic Definition of Modular Neural Networks , 1994, Adapt. Behav..

[135]  Robert E. Smith,et al.  Is a Learning Classifier System a Type of Neural Network? , 1994, Evolutionary Computation.

[136]  Harry Wechsler,et al.  Data fusion in neural networks via computational evolution , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[137]  Chris Nikolopoulos,et al.  A hybrid expert system for investment advising , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[138]  Frédéric Gruau,et al.  Genetic micro programming of neural networks , 1994 .

[139]  S. G. Romaniuk Towards minimal network architectures with evolutionary growth networks , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[140]  Vittorio Maniezzo,et al.  Genetic evolution of the topology and weight distribution of neural networks , 1994, IEEE Trans. Neural Networks.

[141]  Sankar K. Pal,et al.  Genetic algorithms with fuzzy fitness function for object extraction using cellular networks , 1994, CVPR 1994.

[142]  Jeffrey L. Elman,et al.  Learning and Evolution in Neural Networks , 1994, Adapt. Behav..

[143]  Inman Harvey,et al.  The use of genetic algorithms for the development of sensorimotor control systems , 1994, Proceedings of PerAc '94. From Perception to Action.

[144]  Peter J. Angeline,et al.  An evolutionary algorithm that constructs recurrent neural networks , 1994, IEEE Trans. Neural Networks.

[145]  Gerald B. Sheblé,et al.  Short-term load forecasting by a neural network and a refined genetic algorithm , 1994 .

[146]  Gerald Tesauro,et al.  Temporal Difference Learning and TD-Gammon , 1995, J. Int. Comput. Games Assoc..

[147]  D. Fogel Phenotypes, genotypes, and operators in evolutionary computation , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[148]  Yves Chauvin,et al.  Backpropagation: theory, architectures, and applications , 1995 .

[149]  Larry R. Medsker,et al.  Genetic Algorithms and Neural Networks , 1995 .

[150]  David B. Fogel,et al.  Evolving Neural Control Systems , 1995, IEEE Expert.

[151]  Yoshiyuki Sankai,et al.  Hybrid adaptive learning control of nonlinear system , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[152]  P. R. Weller,et al.  Using a genetic algorithm to evolve an optimum input set for a predictive neural network , 1995 .

[153]  D B Fogel,et al.  Evolving neural networks for detecting breast cancer. , 1995, Cancer letters.

[154]  Francesco Mondada,et al.  Evolution of neural control structures: some experiments on mobile robots , 1995, Robotics Auton. Syst..

[155]  Peter G. Korning,et al.  Training neural networks by means of genetic algorithms working on very long chromosomes , 1995, Int. J. Neural Syst..

[156]  Terry Bossomaier,et al.  MONSTER - the Ghost in the Connection Machine: Modularity of Neural Systems in Theoretical Evolutionary Research , 1995, SC.

[157]  Mohamad H. Hassoun,et al.  Neurocontrollers trained with rules extracted by a genetic assisted reinforcement learning system , 1995, IEEE Trans. Neural Networks.

[158]  M. Mandischer Evolving recurrent neural networks with non-binary encoding , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[159]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[160]  A. Skinner,et al.  Neural networks in computational materials science: training algorithms , 1995 .

[161]  Jean-Lien C. Wu,et al.  Parameter Adjustment Using Neural-Network-Based Genetic Algorithms for Guaranteed QOS in ATM Networks , 1995 .

[162]  David B. Fogel,et al.  Alternative Neural Network Training Methods , 1995, IEEE Expert.

[163]  Sangbong Park,et al.  A neuro-genetic controller for nonminimum phase systems , 1995, IEEE Trans. Neural Networks.

[164]  Yoh-Han Pao,et al.  Combinatorial optimization with use of guided evolutionary simulated annealing , 1995, IEEE Trans. Neural Networks.

[165]  Risto Miikkulainen,et al.  Discovering Complex Othello Strategies through Evolutionary Neural Networks , 1995, Connect. Sci..

[166]  Stephen A. Billings,et al.  Radial basis function network configuration using genetic algorithms , 1995, Neural Networks.

[167]  Xin Yao,et al.  Evolving Artificial Neural Networks for Medical Applications , 1995 .

[168]  W. Jacak,et al.  Genetic algorithm based neural networks for dynamical system modeling , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[169]  H. Ishigami,et al.  Structure optimization of fuzzy neural network by genetic algorithm , 1995 .

[170]  Awad S. Hanna,et al.  Evolutionary neural network model for the selection of pavement maintenance strategy , 1995 .

[171]  Takumi Ichimura,et al.  Reasoning and learning method for fuzzy rules using neural networks with adaptive structured genetic algorithm , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[172]  Yan Chen,et al.  Nuclear reactor diagnostic system using genetic algorithm (GA)‐trained neural networks , 1995 .

[173]  Lakhmi C. Jain,et al.  Using genetic algorithms with grammar encoding to generate neural networks , 1995, Proceedings of ICNN'95 - International Conference on Neural Networks.

[174]  Xin Yao,et al.  A Preliminary Study on Designing Artiicial Neural Networks Using Co-evolution , 1995 .

[175]  Sam Kwong,et al.  Genetic structure for NN topology and weights optimization , 1995 .

[176]  David W. Coit,et al.  Solving the redundancy allocation problem using a combined neural network/genetic algorithm approach , 1996, Comput. Oper. Res..

[177]  Shyh-Jier Huang,et al.  Genetic-based multilayered perception for Taiwan power system short-term load forecasting , 1996 .

[178]  Seong-Whan Lee Off-Line Recognition of Totally Unconstrained Handwritten Numerals Using Multilayer Cluster Neural Network , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[179]  Bruce A. Whitehead,et al.  Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction , 1996, IEEE Trans. Neural Networks.

[180]  Kyu Ho Park,et al.  Fast learning method for back-propagation neural network by evolutionary adaptation of learning rates , 1996, Neurocomputing.

[181]  A.I. Esparcia-Alcazar,et al.  Genetic programming techniques that evolve recurrent neural network architectures for signal processing , 1996, Neural Networks for Signal Processing VI. Proceedings of the 1996 IEEE Signal Processing Society Workshop.

[182]  Shumeet Baluja,et al.  Evolution of an artificial neural network based autonomous land vehicle controller , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[183]  Xin Yao,et al.  Evolutionary Artificial Neural Networks That Learn and Generalise Well , 1996 .

[184]  Jiann-Der Lee,et al.  A cache-genetic-based modular fuzzy neural network for robot path planning , 1996, 1996 IEEE International Conference on Systems, Man and Cybernetics. Information Intelligence and Systems (Cat. No.96CH35929).

[185]  Sung-Bae Cho,et al.  Modular neural networks evolved by genetic programming , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[186]  Yuji Sato,et al.  Coevolution in recurrent neural networks using genetic algorithms , 1996, Systems and Computers in Japan.

[187]  Cheng-Yan Kao,et al.  Evolving neural induction regular language using combined evolutionary algorithms , 1996, Proceedings Mexico-USA Collaboration in Intelligent Systems Technologies..

[188]  Kaisa Sere,et al.  Neural networks and genetic algorithms for bankruptcy predictions , 1996 .

[189]  Anthony Tzes,et al.  Neural network design with genetic learning for control of a single link flexible manipulator , 1994, J. Intell. Robotic Syst..

[190]  Bruce A. Whitehead,et al.  Genetic evolution of radial basis function coverage using orthogonal niches , 1996, IEEE Trans. Neural Networks.

[191]  James V. Hansen,et al.  Learning experiments with genetic optimization of a generalized regression neural network , 1996, Decis. Support Syst..

[192]  Tamás Szirányi,et al.  Robustness of cellular neural networks in image deblurring and texture segmentation , 1996, International journal of circuit theory and applications.

[193]  S. Yao,et al.  Evolving wavelet neural networks for function approximation , 1996 .

[194]  M. Kishimoto,et al.  Reconstruction of plasma current profile of tokamaks using combinatorial optimization techniques , 1996 .

[195]  Dong Wang,et al.  Fault detection based on evolving LVQ neural networks , 1996, 1996 IEEE International Conference on Systems, Man and Cybernetics. Information Intelligence and Systems (Cat. No.96CH35929).

[196]  Xin YaoComputational A Population-Based Learning Algorithm Which Learns BothArchitectures and Weights of Neural Networks , 1996 .

[197]  Safaai Deris,et al.  Stabilization of inverted pendulum by the genetic algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[198]  Devesh Patel Using genetic algorithms to construct a network for financial prediction , 1996, Electronic Imaging.

[199]  Yaow-Ming Chen,et al.  Active power line conditioner with a neural network control , 1996, IAS '96. Conference Record of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting.

[200]  Vassilios Petridis,et al.  Co-operating Populations with Different Evolution Behaviours , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[201]  Sang-Kyung Lee,et al.  Translation, rotation and scale invariant pattern recognition using spectral analysis and hybrid genetic-neural-fuzzy networks , 1996 .

[202]  Sungzoon Cho,et al.  Evolution of neural network training set through addition of virtual samples , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[203]  Jack Sklansky,et al.  Genetic Selection and Neural Modeling of Piecewise-Linear Classifiers , 1996, Int. J. Pattern Recognit. Artif. Intell..

[204]  X. Yao,et al.  How to Make Best Use of Evolutionary Learning , 1996 .

[205]  Xin Yao,et al.  EPNet for Chaotic Time-Series Prediction , 1996, SEAL.

[206]  Xin Yao,et al.  Evolutionary design of artificial neural networks with different nodes , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[207]  Tatsuo Higuchi,et al.  Efficient learning of NN-MLP based on individual evolutionary algorithm , 1996, Neurocomputing.

[208]  Xin Yao,et al.  Evolving Artificial Neural Networks through Evolutionary Programming , 1996, Evolutionary Programming.

[209]  Lisa Meeden,et al.  An incremental approach to developing intelligent neural network controllers for robots , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[210]  J. Zhou,et al.  Using Genetic Learning Neural Networks for Spatial Decision Making in GIs , 1996 .

[211]  Xin Yao,et al.  Fast Evolutionary Programming , 1996, Evolutionary Programming.

[212]  Jong-Hwan Kim,et al.  Evolutionary ordered neural network with a linked-list encoding scheme , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[213]  Xin Yao,et al.  Ensemble structure of evolutionary artificial neural networks , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[214]  Dirk Thierens,et al.  Non-redundant genetic coding of neural networks , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[215]  Herbert F. Jelinek,et al.  Complex systems : from local interactions to global phenomena , 1996 .

[216]  L. Boullart,et al.  Optimizing the Fiber-to-Yarn Production Process with a Combined Neural Network/Genetic Algorithm Approach , 1997 .

[217]  Tetsuo Morimoto,et al.  An intelligent approach for optimal control of fruit-storage process using neural networks and genetic algorithms , 1997 .

[218]  Wei Yan,et al.  A hybrid genetic/BP algorithm and its application for radar target classification , 1997, Proceedings of the IEEE 1997 National Aerospace and Electronics Conference. NAECON 1997.

[219]  Taghi M. Khoshgoftaar,et al.  Evolutionary neural networks: a robust approach to software reliability problems , 1997, Proceedings The Eighth International Symposium on Software Reliability Engineering.

[220]  David B. Fogel,et al.  A note on representations and variation operators , 1997, IEEE Trans. Evol. Comput..

[221]  A. T. Johns,et al.  Non-communication protection of transmission line based on genetic evolved neural network , 1997 .

[222]  Thomas Ragg,et al.  Automatic determination of optimal network topologies based on information theory and evolution , 1997, EUROMICRO 97. Proceedings of the 23rd EUROMICRO Conference: New Frontiers of Information Technology (Cat. No.97TB100167).

[223]  Devil H. F. Yip,et al.  Application of artificial neural networks in sales forecasting , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[224]  Ching-Lien Huang,et al.  Application of genetic-based neural networks to thermal unit commitment , 1997 .

[225]  Sigeru Omatu,et al.  Self-tuning neuro-PID control and applications , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[226]  Xin Yao,et al.  Fast Evolution Strategies , 1997, Evolutionary Programming.

[227]  Risto Miikkulainen,et al.  Forming Neural Networks Through Efficient and Adaptive Coevolution , 1997, Evolutionary Computation.

[228]  Peter Eggenberger Hotz Creation of Neural Networks Based on Developmental and Evolutionary Principles , 1997, ICANN.

[229]  Garrison W. Greenwood Training partially recurrent neural networks using evolutionary strategies , 1997, IEEE Trans. Speech Audio Process..

[230]  Yugeng Xi,et al.  Neural network design based on evolutionary programming , 1997, Artif. Intell. Eng..

[231]  L Iu,et al.  OPTIMIZATION OF NEURAL NETWORKS BY GENETIC ALGORITHM , 1997 .

[232]  Khaled Hassanein,et al.  A comparative study of combination schemes for an ensemble of digit recognition neural networks , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[233]  R. Berlich,et al.  A COMPARISON BETWEEN THE PERFORMANCE OF FEED FORWARD NEURAL NETWORKS AND THE SUPERVISED GROWING NEURAL GAS ALGORITHM , 1997 .

[234]  I. Erkmen,et al.  Short term load forecasting using genetically optimized neural network cascaded with a modified Kohonen clustering process , 1997, Proceedings of 12th IEEE International Symposium on Intelligent Control.

[235]  Jia Lei,et al.  The state estimation of the CSTR system based on a recurrent neural network trained by HGAs , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[236]  Sung-Bae Cho,et al.  Combining modular neural networks developed by evolutionary algorithm , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[237]  M. Koppen,et al.  A neural network that uses evolutionary learning , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[238]  Lefteri H. Tsoukalas,et al.  A new hybrid neural-genetic methodology for improving learning , 1997, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence.

[239]  Cihan H. Dagli,et al.  A parallel genetic-neuro scheduler for job-shop scheduling problems , 1997 .

[240]  Jeng-Sheng Huang,et al.  Object recognition using genetic algorithms with a Hopfield's neural model , 1997 .

[241]  László Monostori,et al.  Feature extraction technique for ANN-based financial forecasting , 1997 .

[242]  C. R. Chow,et al.  A Concurrent Training Algorithm for Supervised Learning in Artificial Neural Networks , 1997, J. Inf. Sci. Eng..

[243]  Spiridon D. Likothanassis,et al.  Optimizing The Structure Of Neural NetworksUsing Evolution Techniques , 1997 .

[244]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[245]  F. Heimes,et al.  Traditional and evolved dynamic neural networks for aircraft simulation , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[246]  Jaehong Park,et al.  Evolutionary projection neural networks , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[247]  Risto Miikkulainen,et al.  Incremental Evolution of Complex General Behavior , 1997, Adapt. Behav..

[248]  Qiangfu Zhao EditEr: a combination of IEA and CEA , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[249]  E C Wasson,et al.  A step toward computer-assisted mammography using evolutionary programming and neural networks. , 1997, Cancer letters.

[250]  A. T. Johns,et al.  Genetic algorithm based neural networks applied to fault classification for EHV transmission lines with a UPFC , 1997 .

[251]  Thomas Bäck,et al.  Evolutionary computation: comments on the history and current state , 1997, IEEE Trans. Evol. Comput..

[252]  Paul G. Harrald,et al.  Evolving artificial neural networks to combine financial forecasts , 1997, IEEE Trans. Evol. Comput..

[253]  Seung-Soo Han,et al.  Using neural network process models to perform PECVD silicon dioxide recipe synthesis via genetic algorithms , 1997 .

[254]  Jose Aguilar,et al.  Recognition algorithm using evolutionary learning on the random neural networks , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[255]  K.C.S. Murty,et al.  Retaining diversity of search point distribution through a breeder genetic algorithm for neural network learning , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[256]  Xin Yao,et al.  A new evolutionary system for evolving artificial neural networks , 1997, IEEE Trans. Neural Networks.

[257]  B. Yegnanarayana,et al.  Feedforward neural networks configuration using evolutionary programming , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[258]  A. Topchy,et al.  Neural network training by means of cooperative evolutionary search , 1997 .

[259]  Matthew A. Kupinski,et al.  Feature selection and classifiers for the computerized detection of mass lesions in digital mammography , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[260]  Tetsuo Morimoto,et al.  Optimization of a fuzzy controller for fruit storage using neural networks and genetic algorithms , 1997 .

[261]  C.A. Perez,et al.  Improvements on handwritten digit recognition by genetic selection of neural network topology and by augmented training , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[262]  Xin Yao,et al.  The importance of maintaining behavioural link between parents and offspring , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[263]  P. Angeline Evolving basis functions with dynamic receptive fields , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[264]  A. Chilingarian,et al.  THE COMPARISON OF BAYESIAN AND NEURAL TECHNIQUES IN PROBLEMS OF CLASSIFICATION TO MULTIPLE CATEGORIES , 1997 .

[265]  X. Yao,et al.  Solving optimal control problems with a cost changing control by evolutionary algorithms , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[266]  Thomas Bäck,et al.  Evolutionary computation: Toward a new philosophy of machine intelligence , 1997, Complex..

[267]  Noboru Noguchi,et al.  Path planning of an agricultural mobile robot by neural network and genetic algorithm , 1997 .

[268]  Lee A. Belfore,et al.  Modeling faulted switched reluctance motors using evolutionary neural networks , 1997, IEEE Trans. Ind. Electron..

[269]  Peter Eggenberger,et al.  Evolving Morphologies of Simulated 3d Organisms Based on Differential Gene Expression , 1997 .

[270]  Robert E. Smith,et al.  Combined biological paradigms: A neural, genetics-based autonomous systems strategy , 1997, Robotics Auton. Syst..

[271]  Qiangfu Zhao Stable online evolutionary learning of NN-MLP , 1997, IEEE Trans. Neural Networks.

[272]  Akira Imada,et al.  Application of an evolution strategy to the Hopfield model of associative memory , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[273]  Xin Yao,et al.  An Analysis of Evolutionary Algorithms Based on Neighborhood and Step Sizes , 1997, Evolutionary Programming.

[274]  Nobuo Funabiki,et al.  An evolutionary neural network algorithm for max cut problems , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[275]  Eugene J. H. Kerckhoffs,et al.  Neural networks in process control: model-based and reinforcement trained controllers , 1997 .

[276]  Cihan H. Dagli,et al.  New approaches to nesting rectangular patterns , 1997, J. Intell. Manuf..

[277]  B. Yegnanarayana,et al.  An evolutionary programming-based probabilistic neural networks construction technique , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[278]  PoliRiccardo,et al.  Evolving the Topology and the Weights of Neural Networks Using a Dual Representation , 1998 .

[279]  Xin Yao,et al.  Towards Designing Neural Network Ensembles by Evolution , 1998, PPSN.

[280]  Xin Yao,et al.  Towards designing artificial neural networks by evolution , 1998 .

[281]  Simon M. Lucas,et al.  A comparison of matrix rewriting versus direct encoding for evolving neural networks , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[282]  Randall S. Sexton,et al.  Toward global optimization of neural networks: A comparison of the genetic algorithm and backpropagation , 1998, Decis. Support Syst..

[283]  Donald Favareau The Symbolic Species: The Co-evolution of Language and the Brain , 1998 .

[284]  Li-Der Chou,et al.  Bandwidth allocation of virtual paths using neural-network-based genetic algorithms , 1998 .

[285]  Kumar Chellapilla,et al.  On Making Problems Evolutionarily Friendly - Part 1: Evolving the Most Convenient Representations , 1998, Evolutionary Programming.

[286]  Xin Yao,et al.  Making use of population information in evolutionary artificial neural networks , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[287]  M. Kamo,et al.  Neural network for female mate preference, trained by a genetic algorithm , 1998 .

[288]  Xin Yao,et al.  Evolving artificial neural networks , 1999, Proc. IEEE.

[289]  Torsten Reil,et al.  Dynamics of Gene Expression in an Artificial Genome - Implications for Biological and Artificial Ontogeny , 1999, ECAL.

[290]  Stefano Nolfi,et al.  Duplication of Modules Facilitates the Evolution of Functional Specialization , 1999, Artificial Life.

[291]  Christoph Adami,et al.  A Developmental Model for the Evolution of Artificial Neural Networks , 2000, Artificial Life.

[292]  Dario Floreano,et al.  Evolution of Adaptive Synapses: Robots with Fast Adaptive Behavior in New Environments , 2001, Evolutionary Computation.

[293]  Vasant Honavar,et al.  Combined Biological Metaphors , 2001 .

[294]  R. Pfeifer,et al.  Repeated structure and dissociation of genotypic and phenotypic complexity in artificial ontogeny , 2001 .