Statistical physics of inference: thresholds and algorithms

Many questions of fundamental interest in today's science can be formulated as inference problems: some partial, or noisy, observations are performed over a set of variables and the goal is to recover, or infer, the values of the variables based on the indirect information contained in the measurements. For such problems, the central scientific questions are: Under what conditions is the information contained in the measurements sufficient for a satisfactory inference to be possible? What are the most efficient algorithms for this task? A growing body of work has shown that often we can understand and locate these fundamental barriers by thinking of them as phase transitions in the sense of statistical physics. Moreover, it turned out that we can use the gained physical insight to develop new promising algorithms. The connection between inference and statistical physics is currently witnessing an impressive renaissance and we review here the current state-of-the-art, with a pedagogical focus on the Ising model which, formulated as an inference problem, we call the planted spin glass. In terms of applications we review two classes of problems: (i) inference of clusters on graphs and networks, with community detection as a special case and (ii) estimating a signal from its noisy linear measurements, with compressed sensing as a case of sparse estimation. Our goal is to provide a pedagogical review for researchers in physics and other fields interested in this fascinating topic.

[1]  H. Dufet Archives des sciences physiques et naturelles , 2022 .

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[4]  E. Crescini Journal de Physique , 1895 .

[5]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[6]  F. Macdougall THE EQUATION OF STATE FOR GASES AND LIQUIDS. , 1916 .

[7]  L. M. M.-T. Theory of Probability , 1929, Nature.

[8]  H. Bethe Statistical Theory of Superlattices , 1935 .

[9]  R. Peierls Statistical theory of superlattices with unequal concentrations of the components , 1936 .

[10]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[11]  日本物理学会,et al.  Progress in Theoretical Physics , 1946, Nature.

[12]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[13]  R. Kikuchi A Theory of Cooperative Phenomena , 1951 .

[14]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[15]  小谷 正雄 日本物理学会誌及びJournal of the Physical Society of Japanの月刊について , 1955 .

[16]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[17]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[18]  Archive for History of Exact Sciences , 1960, Nature.

[19]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[20]  L. Goddard Information Theory , 1962, Nature.

[21]  Physical Review , 1965, Nature.

[22]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[23]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[24]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[25]  D. Haar,et al.  Statistical Physics , 1971, Nature.

[26]  Thomas S. Huang,et al.  Image processing , 1971 .

[27]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[28]  A. Hoffman,et al.  Lower bounds for the partitioning of graphs , 1973 .

[29]  S. Kirkpatrick,et al.  Solvable Model of a Spin-Glass , 1975 .

[30]  S. Boorman,et al.  Social structure from multiple networks: I , 1976 .

[31]  S. Boorman,et al.  Social Structure from Multiple Networks. I. Blockmodels of Roles and Positions , 1976, American Journal of Sociology.

[32]  D. Mattis Solvable spin systems with random interactions , 1976 .

[33]  W. Zachary,et al.  An Information Flow Model for Conflict and Fission in Small Groups , 1977, Journal of Anthropological Research.

[34]  R. Palmer,et al.  Solution of 'Solvable model of a spin glass' , 1977 .

[35]  W. Warmuth De Finetti, B.: Theory of Probability - A Critical Introductory Treatment, Volume 2. John Wiley & Sons, London-New York-Sydney-Toronto 1975. XIV, 375 S., £ 10.50 , 1977 .

[36]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[37]  R. J. Joenk,et al.  IBM journal of research and development: information for authors , 1978 .

[38]  D. Thouless,et al.  Stability of the Sherrington-Kirkpatrick solution of a spin glass model , 1978 .

[39]  H. Nishimori Exact results and critical properties of the Ising model with competing interactions , 1980 .

[40]  H. Nishimori Internal Energy, Specific Heat and Correlation Function of the Bond-Random Ising Model , 1981 .

[41]  E. Holleran An equation of state for gases and liquids , 1982 .

[42]  H. Sompolinsky,et al.  Relaxational dynamics of the Edwards-Anderson model and the mean-field theory of spin-glasses , 1982 .

[43]  T. Plefka Convergence condition of the TAP equation for the infinite-ranged Ising spin glass model , 1982 .

[44]  D. R. Bowman,et al.  Spin-glass theory in the Bethe approximation: Insights and problems , 1982 .

[45]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Judea Pearl,et al.  Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach , 1982, AAAI.

[47]  Kathryn B. Laskey,et al.  Stochastic blockmodels: First steps , 1983 .

[48]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[49]  M. Mézard,et al.  The simplest spin glass , 1984 .

[50]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[52]  Béla Bollobás,et al.  Random Graphs , 1985 .

[53]  A. Stoneham JOURNAL-OF-PHYSICS-C - SOLID-STATE PHYSICS AND SEMICONDUCTOR SCIENCE AND TECHNOLOGY , 1985 .

[54]  A. Bray,et al.  Phase diagrams for dilute spin glasses , 1985 .

[55]  Kanter,et al.  Mean-field theory of the Potts glass. , 1985, Physical review letters.

[56]  J. Bouchaud,et al.  Exact properties of spin glasses. II. Nishimori's line : new results and physical implications , 1985 .

[57]  D. Thouless,et al.  Spin-glass on a Bethe lattice. , 1986, Physical review letters.

[58]  Giorgio Parisi,et al.  SK Model: The Replica Solution without Replicas , 1986 .

[59]  T. R. Kirkpatrick,et al.  p-spin-interaction spin-glass models: Connections with the structural glass problem. , 1987, Physical review. B, Condensed matter.

[60]  T. R. Kirkpatrick,et al.  Dynamics of the structural glass transition and the p-spin-interaction spin-glass model. , 1987, Physical review letters.

[61]  T. R. Kirkpatrick,et al.  Connections between some kinetic and equilibrium theories of the glass transition. , 1987, Physical review. A, General physics.

[62]  Carsten Peterson,et al.  A Mean Field Theory Learning Algorithm for Neural Networks , 1987, Complex Syst..

[63]  T. R. Kirkpatrick,et al.  Stable and metastable states in mean-field Potts and structural glasses. , 1987, Physical review. B, Condensed matter.

[64]  P. Wolynes,et al.  Spin glasses and the statistical mechanics of protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[65]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[66]  Kwon,et al.  Ising spin glass at zero temperature on the Bethe lattice. , 1988, Physical review. B, Condensed matter.

[67]  E. Gardner,et al.  Optimal storage properties of neural network models , 1988 .

[68]  K. Hashimoto Zeta functions of finite graphs and representations of p-adic groups , 1989 .

[69]  M. V. Rossum,et al.  In Neural Computation , 2022 .

[70]  T. R. Kirkpatrick,et al.  Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. , 1989, Physical review. A, General physics.

[71]  W. Krauth,et al.  Storage capacity of memory networks with binary couplings , 1989 .

[72]  E. Gardner,et al.  Three unfinished works on the optimal storage capacity of networks , 1989 .

[73]  Nicolas Sourlas,et al.  Spin-glass models as error-correcting codes , 1989, Nature.

[74]  M. Mézard The space of interactions in neural networks: Gardner's computation with the cavity method , 1989 .

[75]  Györgyi,et al.  First-order transition to perfect generalization in a neural network with binary synapses. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[76]  D. Thouless,et al.  Bethe lattice spin glass: The effects of a ferromagnetic bias and external fields. II. Magnetized spin-glass phase and the de Almeida-Thouless line , 1990 .

[77]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[78]  D. Thouless,et al.  Bethe lattice spin glass: The effects of a ferromagnetic bias and external fields. I. Bifurcation analysis , 1990 .

[79]  E. Kandel,et al.  Proceedings of the National Academy of Sciences of the United States of America. Annual subject and author indexes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Nicolas Sourlas,et al.  Statistical Mechanics and Error-Correcting Codes , 1990 .

[81]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[82]  K. Hashimoto Automorphic Forms and Geometry of Arithmetic Varieties , 1990 .

[83]  J. Wehr,et al.  Fluctuations of extensive functions of quenched random couplings , 1990 .

[84]  J. Yedidia,et al.  How to expand around mean-field theory using high-temperature expansions , 1991 .

[85]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[86]  Sompolinsky,et al.  Statistical mechanics of learning from examples. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[87]  Mark Jerrum,et al.  Large Cliques Elude the Metropolis Process , 1992, Random Struct. Algorithms.

[88]  H. Bass THE IHARA-SELBERG ZETA FUNCTION OF A TREE LATTICE , 1992 .

[89]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[90]  T. Watkin,et al.  THE STATISTICAL-MECHANICS OF LEARNING A RULE , 1993 .

[91]  Cugliandolo,et al.  Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model. , 1993, Physical review letters.

[92]  Mark Jerrum,et al.  Simulated annealing for graph bisection , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[93]  A. Crisanti,et al.  The sphericalp-spin interaction spin-glass model , 1993 .

[94]  Michael Biehl,et al.  Statistical mechanics of unsupervised structure recognition , 1994 .

[95]  E.E. Pissaloux,et al.  Image Processing , 1994, Proceedings. Second Euromicro Workshop on Parallel and Distributed Processing.

[96]  N. Sourlas Spin Glasses, Error-Correcting Codes and Finite-Temperature Decoding , 1994 .

[97]  Sompolinsky,et al.  Statistical mechanics of the maximum-likelihood density estimation. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[98]  J. Nadal,et al.  From statistical physics to statistical inference and back , 1994 .

[99]  J. Nadal,et al.  Optimal unsupervised learning , 1994 .

[100]  G. Parisi,et al.  Mean-field equations for spin models with orthogonal interaction matrices , 1995, cond-mat/9503009.

[101]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[102]  S. Kak Information, physics, and computation , 1996 .

[103]  Monasson,et al.  Entropy of the K-satisfiability problem. , 1996, Physical review letters.

[104]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[105]  Hector J. Levesque,et al.  Generating Hard Satisfiability Problems , 1996, Artif. Intell..

[106]  Eric Moulines,et al.  A blind source separation technique using second-order statistics , 1997, IEEE Trans. Signal Process..

[107]  Mike Mannion,et al.  Complex systems , 1997, Proceedings International Conference and Workshop on Engineering of Computer-Based Systems.

[108]  M. Mézard,et al.  Out of equilibrium dynamics in spin-glasses and other glassy systems , 1997, cond-mat/9702070.

[109]  G. Parisi,et al.  Phase Diagram of Coupled Glassy Systems: A Mean-Field Study , 1997 .

[110]  G. Parisi,et al.  Temperature evolution and bifurcations of metastable states in mean-field spin glasses, with connections with structural glasses , 1997, cond-mat/9703091.

[111]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[112]  Ari Juels,et al.  Hiding Cliques for Cryptographic Security , 1998, SODA '98.

[113]  Noga Alon,et al.  Finding a large hidden clique in a random graph , 1998, SODA '98.

[114]  Yoshiyuki Kabashima,et al.  Belief propagation vs. TAP for decoding corrupted messages , 1998 .

[115]  G. Jaeger,et al.  The Ehrenfest Classification of Phase Transitions: Introduction and Evolution , 1998 .

[116]  Y. Iba The Nishimori line and Bayesian statistics , 1998, cond-mat/9809190.

[117]  H. Nishimori,et al.  Statistical mechanics of image restoration and error-correcting codes. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[118]  John Eccleston,et al.  Statistics and Computing , 2006 .

[119]  J. Bouchaud,et al.  Noise Dressing of Financial Correlation Matrices , 1998, cond-mat/9810255.

[120]  Rémi Monasson,et al.  Determining computational complexity from characteristic ‘phase transitions’ , 1999, Nature.

[121]  Kamil Sh. Zigangirov,et al.  Time-varying periodic convolutional codes with low-density parity-check matrix , 1999, IEEE Trans. Inf. Theory.

[122]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[123]  T. Sejnowski,et al.  Removing electroencephalographic artifacts by blind source separation. , 2000, Psychophysiology.

[124]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[125]  J. Bouchaud,et al.  Theory Of Financial Risk And Derivative Pricing , 2000 .

[126]  Sompolinsky,et al.  Thouless-anderson-palmer equations for neural networks , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[127]  H. Nishimori Statistical Physics of Spin Glasses and Information Processing , 2001 .

[128]  Christian Van den Broeck,et al.  Statistical Mechanics of Learning , 2001 .

[129]  M. Mézard,et al.  The Bethe lattice spin glass revisited , 2000, cond-mat/0009418.

[130]  M. Opper,et al.  Tractable approximations for probabilistic models: the adaptive Thouless-Anderson-Palmer mean field approach. , 2001, Physical review letters.

[131]  M. Mézard,et al.  A ferromagnet with a glass transition , 2001, cond-mat/0103026.

[132]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2001, Springer Series in Statistics.

[133]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[134]  V. Akila,et al.  Information , 2001, The Lancet.

[135]  Riccardo Zecchina,et al.  Simplest random K-satisfiability problem , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[136]  西森 秀稔 Statistical physics of spin glasses and information processing : an introduction , 2001 .

[137]  M. Opper,et al.  Advanced mean field methods: theory and practice , 2001 .

[138]  Toshiyuki Tanaka,et al.  A statistical-mechanics approach to large-system analysis of CDMA multiuser detectors , 2002, IEEE Trans. Inf. Theory.

[139]  Cristopher Moore,et al.  The asymptotic order of the random k-SAT threshold , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[140]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[141]  F. Guerra,et al.  The Thermodynamic Limit in Mean Field Spin Glass Models , 2002, cond-mat/0204280.

[142]  Riccardo Zecchina,et al.  Hiding solutions in random satisfiability problems: A statistical mechanics approach , 2001, Physical review letters.

[143]  Arieh Iserles,et al.  On the Foundations of Computational Mathematics , 2001 .

[144]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[145]  P. Laguna,et al.  Signal Processing , 2002, Yearbook of Medical Informatics.

[146]  Riccardo Zecchina,et al.  Coloring random graphs , 2002, Physical review letters.

[147]  Riccardo Zecchina,et al.  Alternative solutions to diluted p-spin models and XORSAT problems , 2002, ArXiv.

[148]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[149]  M. Mézard,et al.  The Cavity Method at Zero Temperature , 2002, cond-mat/0207121.

[150]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[151]  William T. Freeman,et al.  Nonparametric belief propagation , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[152]  William T. Freeman,et al.  Understanding belief propagation and its generalizations , 2003 .

[153]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[154]  Joel Friedman,et al.  A proof of Alon's second eigenvalue conjecture and related problems , 2004, ArXiv.

[155]  D. Lusseau,et al.  The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations , 2003, Behavioral Ecology and Sociobiology.

[156]  S. Grossberg,et al.  Psychological Review , 2003 .

[157]  M. Luise European Transactions on Telecommunications , 2003 .

[158]  Y. Kabashima Propagating beliefs in spin-glass models , 2002, cond-mat/0211500.

[159]  Y. Kabashima A CDMA multiuser detection algorithm on the basis of belief propagation , 2003 .

[160]  A. Pagnani,et al.  Near-optimal configurations in mean-field disordered systems. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[161]  M. Mézard,et al.  Two Solutions to Diluted p-Spin Models and XORSAT Problems , 2003 .

[162]  J. Coyle Inverse Problems , 2004 .

[163]  S. Péché,et al.  Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.

[164]  Dimitris Achlioptas,et al.  THE THRESHOLD FOR RANDOM k-SAT IS 2k log 2 O(k) , 2004, FOCS 2004.

[165]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[166]  M. Newman,et al.  Finding community structure in very large networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[167]  Yoshiyuki Kabashima,et al.  A BP-Based Algorithm for Performing Bayesian Inference in Large Perceptron-Type Networks , 2004, ALT.

[168]  Larry Wasserman,et al.  All of Statistics: A Concise Course in Statistical Inference , 2004 .

[169]  Hilbert J. Kappen,et al.  Validity Estimates for Loopy Belief Propagation on Binary Real-world Networks , 2004, NIPS.

[170]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[171]  Joel Friedman,et al.  A proof of Alon's second eigenvalue conjecture and related problems , 2004, ArXiv.

[172]  Sergio Verdú,et al.  Randomly spread CDMA: asymptotics via statistical physics , 2005, IEEE Transactions on Information Theory.

[173]  D. Sherrington,et al.  Stealing the Gold: A Celebration of the Pioneering Physics of Sam Edwards , 2005 .

[174]  Lada A. Adamic,et al.  The political blogosphere and the 2004 U.S. election: divided they blog , 2005, LinkKDD '05.

[175]  Cristopher Moore,et al.  Generating Hard Satisfiable Formulas by Hiding Solutions Deceptively , 2005, AAAI.

[176]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[177]  F. Guerra Spin Glasses , 2005, cond-mat/0507581.

[178]  F. Krzakala,et al.  Spin glass models with ferromagnetically biased couplings on the Bethe lattice: analytic solutions and numerical simulations , 2004, cond-mat/0403053.

[179]  D. Donoho,et al.  Sparse nonnegative solution of underdetermined linear equations by linear programming. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[180]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[181]  M. Newman,et al.  Finding community structure in networks using the eigenvectors of matrices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[182]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[183]  D. Hinkley Annals of Statistics , 2006 .

[184]  Yoshua Bengio,et al.  Greedy Layer-Wise Training of Deep Networks , 2006, NIPS.

[185]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[186]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[187]  B. Bollobás,et al.  Combinatorics, Probability and Computing , 2006 .

[188]  J. Reichardt,et al.  Statistical mechanics of community detection. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[189]  Riccardo Zecchina,et al.  Learning by message-passing in networks of discrete synapses , 2005, Physical review letters.

[190]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[191]  Koujin Takeda,et al.  Analysis of CDMA systems that are characterized by eigenvalue spectrum , 2006, ArXiv.

[192]  A. Montanari,et al.  Rigorous Inequalities Between Length and Time Scales in Glassy Systems , 2006, cond-mat/0603018.

[193]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[194]  P. S. Dwyer Annals of Applied Probability , 2006 .

[195]  A. Montanari,et al.  On the Dynamics of the Glass Transition on Bethe Lattices , 2005, cond-mat/0509366.

[196]  Hendrik B. Geyer,et al.  Journal of Physics A - Mathematical and General, Special Issue. SI Aug 11 2006 ?? Preface , 2006 .

[197]  M. Hastings Community detection as an inference problem. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[198]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[199]  N. Alon,et al.  Non-backtracking random walks mix faster , 2006, math/0610550.

[200]  S. Sodin Random matrices, nonbacktracking walks, and orthogonal polynomials , 2007, math-ph/0703043.

[201]  Florent Krzakala,et al.  Phase Transitions in the Coloring of Random Graphs , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[202]  Florent Krzakala,et al.  A Landscape Analysis of Constraint Satisfaction Problems , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[203]  Andrea Montanari,et al.  Modern Coding Theory: The Statistical Mechanics and Computer Science Point of View , 2007, ArXiv.

[204]  Thierry Mora Géométrie et inférence dans l'optimisation et en théorie de l'information , 2007 .

[205]  C. Mitchell in Designs , Codes , and Cryptography , 2007 .

[206]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[207]  Andrea Montanari,et al.  Counting good truth assignments of random k-SAT formulae , 2006, SODA '07.

[208]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[209]  Andrea Montanari,et al.  Gibbs states and the set of solutions of random constraint satisfaction problems , 2006, Proceedings of the National Academy of Sciences.

[210]  Yoshiyuki Kabashima,et al.  Inference from correlated patterns: a unified theory for perceptron learning and linear vector channels , 2007, ArXiv.

[211]  Amin Coja-Oghlan,et al.  Algorithmic Barriers from Phase Transitions , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[212]  Y. Kabashima,et al.  Perceptron capacity revisited: classification ability for correlated patterns , 2007, 0712.4050.

[213]  Chris H Wiggins,et al.  Bayesian approach to network modularity. , 2007, Physical review letters.

[214]  I. Hargittai,et al.  The mathematical intelligencer , 2008 .

[215]  Lenka Zdeborová,et al.  Statistical Physics of Hard Optimization Problems , 2008, ArXiv.

[216]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[217]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[218]  Andrea Montanari,et al.  Estimating random variables from random sparse observations , 2007, Eur. Trans. Telecommun..

[219]  Paul H. Siegel,et al.  Gaussian belief propagation solver for systems of linear equations , 2008, 2008 IEEE International Symposium on Information Theory.

[220]  Richard G. Baraniuk,et al.  1-Bit compressive sensing , 2008, 2008 42nd Annual Conference on Information Sciences and Systems.

[221]  Sundeep Rangan,et al.  Asymptotic Analysis of MAP Estimation via the Replica Method and Compressed Sensing , 2009, NIPS.

[222]  Lenka Zdeborová,et al.  A conjecture on the maximum cut and bisection width in random regular graphs , 2009, ArXiv.

[223]  I. Johnstone,et al.  Sparse Principal Components Analysis , 2009, 0901.4392.

[224]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[225]  Yoshiyuki Kabashima,et al.  Erratum: A typical reconstruction limit of compressed sensing based on Lp-norm minimization , 2009, ArXiv.

[226]  T. Rogers,et al.  Cavity approach to the spectral density of non-Hermitian sparse matrices. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[227]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[228]  R. Maitra,et al.  Supplement to “ A k-mean-directions Algorithm for Fast Clustering of Data on the Sphere ” published in the Journal of Computational and Graphical Statistics , 2009 .

[229]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[230]  Amin Coja-Oghlan,et al.  Graph Partitioning via Adaptive Spectral Techniques , 2009, Combinatorics, Probability and Computing.

[231]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[232]  G. Biroli,et al.  The Random First-Order Transition Theory of Glasses: a critical assessment , 2009, 0912.2542.

[233]  Guillermo Sapiro,et al.  Online dictionary learning for sparse coding , 2009, ICML '09.

[234]  Florent Krzakala,et al.  Hiding Quiet Solutions in Random Constraint Satisfaction Problems , 2009, Physical review letters.

[235]  Amin Coja-Oghlan,et al.  Finding Planted Partitions in Random Graphs with General Degree Distributions , 2009, SIAM J. Discret. Math..

[236]  F. Krzakala,et al.  Following Gibbs states adiabatically: the energy landscape of mean field glassy systems , 2009, 0909.3820.

[237]  Elchanan Mossel,et al.  A Spectral Approach to Analysing Belief Propagation for 3-Colouring , 2007, Combinatorics, Probability and Computing.

[238]  Richard G. Baraniuk,et al.  Bayesian Compressive Sensing Via Belief Propagation , 2008, IEEE Transactions on Signal Processing.

[239]  Rüdiger L. Urbanke,et al.  Threshold Saturation via Spatial Coupling: Why Convolutional LDPC Ensembles Perform So Well over the BEC , 2010, IEEE Transactions on Information Theory.

[240]  Andrea Montanari,et al.  Matrix completion from a few entries , 2009, 2009 IEEE International Symposium on Information Theory.

[241]  Surya Ganguli,et al.  Statistical mechanics of compressed sensing. , 2010, Physical review letters.

[242]  Koujin Takeda,et al.  Statistical mechanical analysis of compressed sensing utilizing correlated compression matrix , 2010, 2010 IEEE International Symposium on Information Theory.

[243]  S. Popoff,et al.  Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. , 2009, Physical review letters.

[244]  Andrea Montanari,et al.  The dynamics of message passing on dense graphs, with applications to compressed sensing , 2010, 2010 IEEE International Symposium on Information Theory.

[245]  C. Borgs,et al.  Percolation on dense graph sequences. , 2007, math/0701346.

[246]  Sundeep Rangan,et al.  Estimation with random linear mixing, belief propagation and compressed sensing , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[247]  Michael Isard,et al.  Nonparametric belief propagation , 2010, Commun. ACM.

[248]  VoLUME Xxxix,et al.  THE AMERICAN JOURNAL OF SOCIOLOGY , 2010 .

[249]  J. Brown Behavioral Ecology and Sociobiology , 2019, Encyclopedia of Animal Behavior.

[250]  Michael Lentmaier,et al.  Iterative Decoding Threshold Analysis for LDPC Convolutional Codes , 2010, IEEE Transactions on Information Theory.

[251]  Henry D. Pfister,et al.  The effect of spatial coupling on compressive sensing , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[252]  A. Dembo,et al.  Ising models on locally tree-like graphs , 2008, 0804.4726.

[253]  F. Krzakala,et al.  Generalization of the cavity method for adiabatic evolution of Gibbs states , 2010, 1003.2748.

[254]  Philip Schniter,et al.  Turbo reconstruction of structured sparse signals , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[255]  M Chertkov,et al.  Inference in particle tracking experiments by passing messages between images , 2009, Proceedings of the National Academy of Sciences.

[256]  R. Mari,et al.  Dynamical transition of glasses: from exact to approximate. , 2011, The Journal of chemical physics.

[257]  F. Krzakala,et al.  On melting dynamics and the glass transition. I. Glassy aspects of melting dynamics. , 2011, The Journal of chemical physics.

[258]  Cristopher Moore,et al.  The Nature of Computation , 2011 .

[259]  Radford M. Neal Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .

[260]  Itay Hen,et al.  Exponential Complexity of the Quantum Adiabatic Algorithm for certain Satisfiability Problems , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[261]  Sundeep Rangan,et al.  Generalized approximate message passing for estimation with random linear mixing , 2010, 2011 IEEE International Symposium on Information Theory Proceedings.

[262]  Sharon Bertsch McGrayne,et al.  The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy , 2011 .

[263]  Mark E. J. Newman,et al.  Stochastic blockmodels and community structure in networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[264]  Sundeep Rangan,et al.  Hybrid Approximate Message Passing with Applications to Structured Sparsity , 2011, ArXiv.

[265]  G. Biroli,et al.  Theoretical perspective on the glass transition and amorphous materials , 2010, 1011.2578.

[266]  Nicolas Macris,et al.  Chains of mean-field models , 2011, ArXiv.

[267]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[268]  Daniel Gooch,et al.  Communications of the ACM , 2011, XRDS.

[269]  F. Bach,et al.  Optimization with Sparsity-Inducing Penalties (Foundations and Trends(R) in Machine Learning) , 2011 .

[270]  Florent Krzakala,et al.  Statistical physics-based reconstruction in compressed sensing , 2011, ArXiv.

[271]  Alain Celisse,et al.  Consistency of maximum-likelihood and variational estimators in the Stochastic Block Model , 2011, 1105.3288.

[272]  Toshiyuki Tanaka,et al.  Improvement of BP-based CDMA multiuser detection by spatial coupling , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[273]  Florent Krzakala,et al.  Quiet Planting in the Locked Constraint Satisfaction Problems , 2009, SIAM J. Discret. Math..

[274]  F. Krzakala,et al.  On melting dynamics and the glass transition. II. Glassy dynamics as a melting process. , 2011, The Journal of chemical physics.

[275]  Devavrat Shah,et al.  Iterative Learning for Reliable Crowdsourcing Systems , 2011, NIPS.

[276]  Cristopher Moore,et al.  Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[277]  Sundeep Rangan,et al.  Neural Reconstruction with Approximate Message Passing (NeuRAMP) , 2011, NIPS.

[278]  J. Bouchaud,et al.  Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management , 2011 .

[279]  Christian P. Robert,et al.  The Theory That Would Not Die: How Bayes’ Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy by Sharon Bertsch McGrayne , 2012 .

[280]  Andrea Montanari,et al.  Universality in Polytope Phase Transitions and Message Passing Algorithms , 2012, ArXiv.

[281]  G. Parisi,et al.  Dynamical critical exponents for the mean-field Potts glass. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[282]  Elchanan Mossel,et al.  Stochastic Block Models and Reconstruction , 2012 .

[283]  D. Donoho,et al.  Information-theoretically optimal compressed sensing via spatial coupling and approximate message passing , 2013, 2012 IEEE International Symposium on Information Theory Proceedings.

[284]  A. Barron,et al.  Least Squares Superposition Codes of Moderate Dictionary Size Are Reliable at Rates up to Capacity , 2012, IEEE Transactions on Information Theory.

[285]  Florent Krzakala,et al.  Belief-propagation reconstruction for discrete tomography , 2012, ArXiv.

[286]  W. Marsden I and J , 2012 .

[287]  Adel Javanmard,et al.  State Evolution for General Approximate Message Passing Algorithms, with Applications to Spatial Coupling , 2012, ArXiv.

[288]  Florent Krzakala,et al.  Comparative study for inference of hidden classes in stochastic block models , 2012, ArXiv.

[289]  Sundeep Rangan,et al.  Compressive Phase Retrieval via Generalized Approximate Message Passing , 2014, IEEE Transactions on Signal Processing.

[290]  Philip Schniter,et al.  Compressive Imaging Using Approximate Message Passing and a Markov-Tree Prior , 2010, IEEE Transactions on Signal Processing.

[291]  Florent Krzakala,et al.  Probabilistic reconstruction in compressed sensing: algorithms, phase diagrams, and threshold achieving matrices , 2012, ArXiv.

[292]  Sundeep Rangan,et al.  Iterative estimation of constrained rank-one matrices in noise , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[293]  G. Biroli,et al.  Ideal glass transitions by random pinning , 2011, Proceedings of the National Academy of Sciences.

[294]  E. Bolthausen An Iterative Construction of Solutions of the TAP Equations for the Sherrington–Kirkpatrick Model , 2012, 1201.2891.

[295]  F. Krzakala,et al.  On the relation between kinetically constrained models of glass dynamics and the random first-order transition theory , 2012, 1203.3166.

[296]  Laurent Massoulié,et al.  Community Detection in the Labelled Stochastic Block Model , 2012, ArXiv.

[297]  G. Lerosey,et al.  Controlling waves in space and time for imaging and focusing in complex media , 2012, Nature Photonics.

[298]  David Barber,et al.  Bayesian reasoning and machine learning , 2012 .

[299]  P. Wolynes,et al.  Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications , 2012 .

[300]  Bin Bi,et al.  Iterative Learning for Reliable Crowdsourcing Systems , 2012 .

[301]  Sergio Verdú,et al.  Optimal Phase Transitions in Compressed Sensing , 2011, IEEE Transactions on Information Theory.

[302]  A. Crisanti,et al.  Following states in temperature in the spherical s + p-spin glass model , 2012, 1204.3734.

[303]  Geoffrey E. Hinton A Practical Guide to Training Restricted Boltzmann Machines , 2012, Neural Networks: Tricks of the Trade.

[304]  F. Ricci-Tersenghi The Bethe approximation for solving the inverse Ising problem: a comparison with other inference methods , 2011, 1112.4814.

[305]  Florent Krzakala,et al.  Compressed sensing of approximately-sparse signals: Phase transitions and optimal reconstruction , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[306]  Ayaka Sakata,et al.  Statistical mechanics of dictionary learning , 2012, ArXiv.

[307]  Gabriele B. Durrant,et al.  Journal of the Royal Statistical Society Series A (Statistics in Society). Special Issue on Paradata , 2013 .

[308]  Andrea Montanari,et al.  Conditional Random Fields, Planted Constraint Satisfaction and Entropy Concentration , 2013, APPROX-RANDOM.

[309]  Elchanan Mossel,et al.  Spectral redemption in clustering sparse networks , 2013, Proceedings of the National Academy of Sciences.

[310]  Florent Krzakala,et al.  Non-adaptive pooling strategies for detection of rare faulty items , 2013, 2013 IEEE International Conference on Communications Workshops (ICC).

[311]  Andrea Montanari,et al.  Finding Hidden Cliques of Size \sqrt{N/e} in Nearly Linear Time , 2013, ArXiv.

[312]  Florent Krzakala,et al.  Robust error correction for real-valued signals via message-passing decoding and spatial coupling , 2013, 2013 IEEE Information Theory Workshop (ITW).

[313]  Philip Schniter,et al.  Hyperspectral image unmixing via bilinear generalized approximate message passing , 2013, Defense, Security, and Sensing.

[314]  Christian Schlegel,et al.  Multiple Access Demodulation in the Lifted Signal Graph With Spatial Coupling , 2011, IEEE Transactions on Information Theory.

[315]  Philippe Rigollet,et al.  Computational Lower Bounds for Sparse PCA , 2013, ArXiv.

[316]  Henry D. Pfister,et al.  On the relevance of graph covers and zeta functions for the analysis of SPA decoding of cycle codes , 2013, 2013 IEEE International Symposium on Information Theory.

[317]  Florent Krzakala,et al.  Compressed sensing under matrix uncertainty: Optimum thresholds and robust approximate message passing , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[318]  Florent Krzakala,et al.  Phase diagram and approximate message passing for blind calibration and dictionary learning , 2013, 2013 IEEE International Symposium on Information Theory.

[319]  Toshiyuki Tanaka,et al.  Low-rank matrix reconstruction and clustering via approximate message passing , 2013, NIPS.

[320]  F. Krzakala,et al.  Performance of simulated annealing in p-spin glasses , 2013, 1309.1736.

[321]  Adnan Masood,et al.  The Theory That Would Not Die : How Bayes ' Rule Cracked the Enigma Code , Hunted Down Russian , 2013 .

[322]  Guilhem Semerjian,et al.  The effect of quantum fluctuations on the coloring of random graphs , 2013, ArXiv.

[323]  G. Parisi,et al.  Quasi-equilibrium in glassy dynamics: an algebraic view , 2012, 1206.4067.

[324]  Laurent Massoulié,et al.  Reconstruction in the labeled stochastic block model , 2013, 2013 IEEE Information Theory Workshop (ITW).

[325]  Yihong Wu,et al.  Computational Barriers in Minimax Submatrix Detection , 2013, ArXiv.

[326]  Florent Krzakala,et al.  The hard-core model on random graphs revisited , 2013, ArXiv.

[327]  Andrea Montanari,et al.  Accurate Prediction of Phase Transitions in Compressed Sensing via a Connection to Minimax Denoising , 2011, IEEE Transactions on Information Theory.

[328]  Kathy P. Wheeler,et al.  Reviews of Modern Physics , 2013 .

[329]  Ayaka Sakata,et al.  Sample complexity of Bayesian optimal dictionary learning , 2013, 2013 IEEE International Symposium on Information Theory.

[330]  Andrea Montanari,et al.  Information-theoretically optimal sparse PCA , 2014, 2014 IEEE International Symposium on Information Theory.

[331]  Alan Frieze,et al.  Random Structures and Algorithms , 2014 .

[332]  Andrea Montanari,et al.  A statistical model for tensor PCA , 2014, NIPS.

[333]  Philip Schniter,et al.  On the convergence of approximate message passing with arbitrary matrices , 2014, 2014 IEEE International Symposium on Information Theory.

[334]  Lenka Zdeborová,et al.  Bayesian signal reconstruction for 1-bit compressed sensing , 2014, ArXiv.

[335]  Florent Krzakala,et al.  Reweighted Belief Propagation and Quiet Planting for Random K-SAT , 2012, J. Satisf. Boolean Model. Comput..

[336]  Cristopher Moore,et al.  Phase transitions in semisupervised clustering of sparse networks , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[337]  Florent Krzakala,et al.  Spectral density of the non-backtracking operator on random graphs , 2014, ArXiv.

[338]  Kathleen E. Hamilton,et al.  Tight lower bound for percolation threshold on an infinite graph. , 2014, Physical review letters.

[339]  Florent Krzakala,et al.  Variational free energies for compressed sensing , 2014, 2014 IEEE International Symposium on Information Theory.

[340]  Yair Weiss,et al.  Belief Propagation , 2012, Encyclopedia of Social Network Analysis and Mining.

[341]  Francesco Caltagirone,et al.  Properties of spatial coupling in compressed sensing , 2014, ArXiv.

[342]  Elchanan Mossel,et al.  Belief propagation, robust reconstruction and optimal recovery of block models , 2013, COLT.

[343]  Philip Schniter,et al.  Binary linear classification and feature selection via generalized approximate message passing , 2014, CISS.

[344]  Cristopher Moore,et al.  Model selection for degree-corrected block models , 2012, Journal of statistical mechanics.

[345]  Giorgio Parisi,et al.  Fractal free energy landscapes in structural glasses , 2014, Nature Communications.

[346]  Volkan Cevher,et al.  Bilinear Generalized Approximate Message Passing—Part I: Derivation , 2013, IEEE Transactions on Signal Processing.

[347]  Amit Singer,et al.  Decoding Binary Node Labels from Censored Edge Measurements: Phase Transition and Efficient Recovery , 2014, IEEE Transactions on Network Science and Engineering.

[348]  B. Henri Aalborg Universitet SAMP : Approximate Message Passing for General Matrix Ensembles , 2014 .

[349]  Florent Krzakala,et al.  On convergence of approximate message passing , 2014, 2014 IEEE International Symposium on Information Theory.

[350]  Michael Unser,et al.  Approximate Message Passing With Consistent Parameter Estimation and Applications to Sparse Learning , 2012, IEEE Transactions on Information Theory.

[351]  Florent Krzakala,et al.  Replica analysis and approximate message passing decoder for superposition codes , 2014, 2014 IEEE International Symposium on Information Theory.

[352]  Lenka Zdeborová,et al.  Percolation on sparse networks , 2014, Physical review letters.

[353]  Mikko Vehkaperä,et al.  Signal recovery using expectation consistent approximation for linear observations , 2014, 2014 IEEE International Symposium on Information Theory.

[354]  Giorgio Parisi,et al.  Hopping and the Stokes–Einstein relation breakdown in simple glass formers , 2014, Proceedings of the National Academy of Sciences.

[355]  R. Gillan New Editor-in-Chief for Journal of Physics A: Mathematical and Theoretical , 2014 .

[356]  Xiao Zhang,et al.  Localization and centrality in networks , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[357]  Glen M. Hocky,et al.  Equilibrium ultrastable glasses produced by random pinning. , 2014, The Journal of chemical physics.

[358]  Ole Winther,et al.  S-AMP: Approximate message passing for general matrix ensembles , 2014, 2014 IEEE Information Theory Workshop (ITW 2014).

[359]  Santosh S. Vempala,et al.  University of Birmingham On the Complexity of Random Satisfiability Problems with Planted Solutions , 2018 .

[360]  Francesco Caltagirone,et al.  Dynamics and termination cost of spatially coupled mean-field models , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[361]  Cristopher Moore,et al.  Scalable detection of statistically significant communities and hierarchies, using message passing for modularity , 2014, Proceedings of the National Academy of Sciences.

[362]  Laurent Massoulié,et al.  Community detection thresholds and the weak Ramanujan property , 2013, STOC.

[363]  Florent Krzakala,et al.  Spectral Clustering of graphs with the Bethe Hessian , 2014, NIPS.

[364]  Trevor Hastie,et al.  Statistical Learning with Sparsity: The Lasso and Generalizations , 2015 .

[365]  Corrado Rainone,et al.  Following the evolution of hard sphere glasses in infinite dimensions under external perturbations: compression and shear strain. , 2014, Physical review letters.

[366]  Florent Krzakala,et al.  Phase transitions in sparse PCA , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[367]  Andrea Montanari,et al.  Finding Hidden Cliques of Size $$\sqrt{N/e}$$N/e in Nearly Linear Time , 2013, Found. Comput. Math..

[368]  Sundeep Rangan,et al.  Adaptive damping and mean removal for the generalized approximate message passing algorithm , 2014, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[369]  G. Parisi,et al.  Numerical detection of the Gardner transition in a mean-field glass former. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[370]  Ole Winther,et al.  A theory of solving TAP equations for Ising models with general invariant random matrices , 2015, ArXiv.

[371]  Florent Krzakala,et al.  Swept Approximate Message Passing for Sparse Estimation , 2015, ICML.

[372]  教英 北岡,et al.  40th IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP)2015 , 2015 .

[373]  F. Radicchi Predicting percolation thresholds in networks. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[374]  Florent Krzakala,et al.  Approximate message-passing with spatially coupled structured operators, with applications to compressed sensing and sparse superposition codes , 2013, 1312.1740.

[375]  Florent Krzakala,et al.  Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques. , 2015, Optics express.

[376]  Florent Krzakala,et al.  Spectral detection on sparse hypergraphs , 2015, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[377]  Florent Krzakala,et al.  Matrix Completion from Fewer Entries: Spectral Detectability and Rank Estimation , 2015, NIPS.

[378]  Florent Krzakala,et al.  MMSE of probabilistic low-rank matrix estimation: Universality with respect to the output channel , 2015, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[379]  Hernán A. Makse,et al.  Influence maximization in complex networks through optimal percolation , 2015, Nature.

[380]  Tengyuan Liang,et al.  Computational and Statistical Boundaries for Submatrix Localization in a Large Noisy Matrix , 2015, 1502.01988.

[381]  Pan Zhang Nonbacktracking operator for the Ising model and its applications in systems with multiple states. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[382]  Florent Krzakala,et al.  Approximate message passing with restricted Boltzmann machine priors , 2015, ArXiv.

[383]  G. Parisi,et al.  Calorimetric glass transition in a mean-field theory approach , 2014, Proceedings of the National Academy of Sciences.

[384]  Laurent Massoulié,et al.  Non-backtracking Spectrum of Random Graphs: Community Detection and Non-regular Ramanujan Graphs , 2014, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[385]  J. Simard,et al.  “All Models Are Wrong, but Some Are Useful” , 2015 .

[386]  Ramji Venkataramanan,et al.  Capacity-achieving Sparse Regression Codes via approximate message passing decoding , 2015, ISIT 2015.

[387]  Florent Krzakala,et al.  Statistical Physics, Optimization, Inference, and Message-Passing Algorithms: Lecture Notes of the Les Houches School of Physics: Special Issue, October 2013 , 2015 .

[388]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[389]  T. Rogers,et al.  Assessing node risk and vulnerability in epidemics on networks , 2015, 1502.00901.

[390]  Florent Krzakala,et al.  Spectral detection in the censored block model , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[391]  Bruce E. Hajek,et al.  Computational Lower Bounds for Community Detection on Random Graphs , 2014, COLT.

[392]  Cristopher Moore,et al.  Community detection in networks with unequal groups , 2015, Physical review. E.

[393]  John Thickstun,et al.  CONDITIONAL RANDOM FIELDS , 2016 .

[394]  Xiaohu You,et al.  Generalized turbo signal recovery for nonlinear measurements and orthogonal sensing matrices , 2015, 2016 IEEE International Symposium on Information Theory (ISIT).

[395]  Sebastian Fischer,et al.  Exploring Artificial Intelligence In The New Millennium , 2016 .

[396]  Florent Krzakala,et al.  Phase Transitions and Sample Complexity in Bayes-Optimal Matrix Factorization , 2014, IEEE Transactions on Information Theory.

[397]  E. M. Sá Czechoslovak Mathematical Journal , 2016 .

[398]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[399]  Sundeep Rangan,et al.  Hybrid Approximate Message Passing , 2011, IEEE Transactions on Signal Processing.

[400]  Andrea Montanari,et al.  On the Limitation of Spectral Methods: From the Gaussian Hidden Clique Problem to Rank One Perturbations of Gaussian Tensors , 2014, IEEE Transactions on Information Theory.

[401]  Ramji Venkataramanan,et al.  Capacity-Achieving Sparse Superposition Codes via Approximate Message Passing Decoding , 2015, IEEE Transactions on Information Theory.

[402]  B. D. Finetti,et al.  Theory of Probability: A Critical Introductory Treatment , 2017 .

[403]  Sundeep Rangan,et al.  Inference for Generalized Linear Models via Alternating Directions and Bethe Free Energy Minimization , 2015, IEEE Transactions on Information Theory.

[404]  Konstantin Avrachenkov,et al.  Cooperative Game Theory Approaches for Network Partitioning , 2017, COCOON.

[405]  Florent Krzakala,et al.  Approximate Message-Passing Decoder and Capacity Achieving Sparse Superposition Codes , 2015, IEEE Transactions on Information Theory.

[406]  Physics Reports , 2022 .

[407]  G. Illies,et al.  Communications in Mathematical Physics , 2004 .

[408]  Journal of Chemical Physics , 1932, Nature.

[409]  October I Physical Review Letters , 2022 .