Boosting of Action Potential Backpropagation by Neocortical Network Activity In Vivo

Action potentials backpropagate into the dendritic trees of pyramidal neurons, reporting output activity to the sites of synaptic input and provoking long-lasting changes in synaptic strength. It is unclear how this retrograde signal is modified by neural network activity. Using whole-cell recordings from somata, apical trunks, and dendritic tuft branches of layer 2/3 pyramidal neurons in vivo, we show that network-driven subthreshold membrane depolarizations (“up states”) occur simultaneously throughout the apical dendritic tree. This spontaneous synaptic activity enhances action potential-evoked calcium influx into the distal apical dendrite by promoting action potential backpropagation. Hence, somatic feedback to the dendrites becomes stronger with increasing network activity.

[1]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[2]  M. Steriade,et al.  A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  L. Cauller,et al.  Synaptic physiology of horizontal afferents to layer I in slices of rat SI neocortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  D. Johnston,et al.  Foundations of Cellular Neurophysiology , 1994 .

[5]  C. Wilson,et al.  Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. , 1994, Journal of neurophysiology.

[6]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[7]  D. Johnston,et al.  Different Ca2+ channels in soma and dendrites of hippocampal pyramidal neurons mediate spike-induced Ca2+ influx. , 1995, Journal of neurophysiology.

[8]  D. Johnston,et al.  Characterization of single voltage‐gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. , 1995, The Journal of physiology.

[9]  A. Dolphin Facilitation of Ca2+ current in excitable cells , 1996, Trends in Neurosciences.

[10]  W. N. Ross,et al.  IPSPs modulate spike backpropagation and associated [Ca2+]i changes in the dendrites of hippocampal CA1 pyramidal neurons. , 1996, Journal of neurophysiology.

[11]  N. Spruston,et al.  Action potential initiation and backpropagation in neurons of the mammalian CNS , 1997, Trends in Neurosciences.

[12]  B. Sakmann,et al.  Action potential initiation and propagation in rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[13]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[14]  Charles J. Wilson,et al.  Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. , 1997, Journal of neurophysiology.

[15]  D. Kleinfeld,et al.  In vivo dendritic calcium dynamics in neocortical pyramidal neurons , 1997, Nature.

[16]  G. Buzsáki,et al.  Somadendritic backpropagation of action potentials in cortical pyramidal cells of the awake rat. , 1998, Journal of neurophysiology.

[17]  B W Connors,et al.  Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I , 1998, The Journal of comparative neurology.

[18]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[19]  D. Ferster,et al.  Synchronous Membrane Potential Fluctuations in Neurons of the Cat Visual Cortex , 1999, Neuron.

[20]  Winfried Denk,et al.  Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo , 1999, Nature Neuroscience.

[21]  N. Spruston,et al.  Diversity and dynamics of dendritic signaling. , 2000, Science.

[22]  J. Lübke,et al.  Columnar Organization of Dendrites and Axons of Single and Synaptically Coupled Excitatory Spiny Neurons in Layer 4 of the Rat Barrel Cortex , 2000, The Journal of Neuroscience.

[23]  A. Konnerth,et al.  NMDA Receptor-Mediated Subthreshold Ca2+ Signals in Spines of Hippocampal Neurons , 2000, The Journal of Neuroscience.

[24]  Two-photon Imaging of Neuronal Function in the Neocortex In Vivo , 2000 .

[25]  M. Häusser,et al.  Dendritic coincidence detection of EPSPs and action potentials , 2001, Nature Neuroscience.

[26]  J Mertz,et al.  Odor-evoked calcium signals in dendrites of rat mitral cells. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. Steriade Similar and contrasting results from studies in the intact and sliced brain , 2001 .

[28]  C. Colbert,et al.  Subthreshold inactivation of Na+ and K+ channels supports activity-dependent enhancement of back-propagating action potentials in hippocampal CA1. , 2001, Journal of neurophysiology.

[29]  A. Reyes,et al.  Influence of dendritic conductances on the input-output properties of neurons. , 2001, Annual review of neuroscience.

[30]  M. Steriade,et al.  Natural waking and sleep states: a view from inside neocortical neurons. , 2001, Journal of neurophysiology.

[31]  M Steriade,et al.  Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[32]  M. Steriade Impact of network activities on neuronal properties in corticothalamic systems. , 2001, Journal of neurophysiology.

[33]  Mircea Steriade,et al.  The Intact and Sliced Brain , 2001 .

[34]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[35]  Wei R. Chen,et al.  Dynamic Gating of Spike Propagation in the Mitral Cell Lateral Dendrites , 2002, Neuron.

[36]  B. Sakmann,et al.  In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain , 2002, Pflügers Archiv.

[37]  P. J. Sjöström,et al.  Spike timing, calcium signals and synaptic plasticity , 2002, Current Opinion in Neurobiology.

[38]  Jack Waters,et al.  Ca2+ imaging in the mammalian brain in vivo. , 2002, European journal of pharmacology.

[39]  G. Shepherd,et al.  Emerging rules for the distributions of active dendritic conductances , 2002, Nature Reviews Neuroscience.

[40]  D. Plenz,et al.  Dendritic Calcium Encodes Striatal Neuron Output during Up-States , 2002, The Journal of Neuroscience.

[41]  B. Sakmann,et al.  Dynamic Receptive Fields of Reconstructed Pyramidal Cells in Layers 3 and 2 of Rat Somatosensory Barrel Cortex , 2003, The Journal of physiology.

[42]  A. Grinvald,et al.  Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[43]  A. Destexhe,et al.  The high-conductance state of neocortical neurons in vivo , 2003, Nature Reviews Neuroscience.

[44]  B. Sakmann,et al.  Molecular Supralinear Ca 2 Influx into Dendritic Tufts of Layer 2 / 3 Neocortical Pyramidal Neurons In Vitro and In Vivo , 2003 .

[45]  Bert Sakmann,et al.  Supralinear Ca2+ Influx into Dendritic Tufts of Layer 2/3 Neocortical Pyramidal Neurons In Vitro and In Vivo , 2003, The Journal of Neuroscience.

[46]  Michael Rudolph,et al.  A Fast-Conducting, Stochastic Integrative Mode for Neocortical Neurons InVivo , 2003, The Journal of Neuroscience.

[47]  D. Johnston,et al.  Distance-dependent modifiable threshold for action potential back-propagation in hippocampal dendrites. , 2003, Journal of neurophysiology.

[48]  E. Perez-Reyes Molecular physiology of low-voltage-activated t-type calcium channels. , 2003, Physiological reviews.

[49]  D. Plenz,et al.  Action Potential Timing Determines Dendritic Calcium during Striatal Up-States , 2004, The Journal of Neuroscience.

[50]  Bert Sakmann,et al.  Backpropagating action potentials in neurones: measurement, mechanisms and potential functions. , 2005, Progress in biophysics and molecular biology.