A d-step approach to the maximum number of distinct squares and runs in strings
暂无分享,去创建一个
[1] Frantisek Franek,et al. A d-Step Approach for Distinct Squares in Strings , 2011, CPM.
[2] Aviezri S. Fraenkel,et al. How Many Squares Can a String Contain? , 1998, J. Comb. Theory, Ser. A.
[3] Frantisek Franek,et al. A computational framework for determining run-maximal strings , 2013, J. Discrete Algorithms.
[4] Britta Rupp-Eisenreich. Tribulations d'une déléguée Française au Canada ou le hasard Fait bien les choses , 1983 .
[5] Frantisek Franek,et al. An Improved Version of the Runs Algorithm Based on Crochemore's Partitioning Algorithm , 2011, Stringology.
[6] Francisco Santos,et al. A counterexample to the Hirsch conjecture , 2010, ArXiv.
[7] Frantisek Franek,et al. A Computational Framework for Determining Square-maximal Strings , 2012, Stringology.
[8] V. Klee,et al. Thed-step conjecture for polyhedra of dimensiond<6 , 1967 .
[9] Hideo Bannai,et al. New Lower Bounds for the Maximum Number of Runs in a String , 2008, Stringology.
[10] Gregory Kucherov,et al. Finding maximal repetitions in a word in linear time , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[11] Wojciech Rytter,et al. On the maximum number of cubic subwords in a word , 2013, Eur. J. Comb..
[12] Lucian Ilie,et al. A note on the number of squares in a word , 2007, Theor. Comput. Sci..
[13] Costas S. Iliopoulos,et al. A Characterization of the Squares in a Fibonacci String , 1997, Theor. Comput. Sci..
[14] Lucian Ilie,et al. A simple proof that a word of length n has at most 2n distinct squares , 2005, J. Comb. Theory A.
[15] Tamás Terlaky,et al. A Continuous d-Step Conjecture for Polytopes , 2009, Discret. Comput. Geom..
[16] Frantisek Franek,et al. On the structure of run-maximal strings , 2012, J. Discrete Algorithms.
[17] Frantisek Franek,et al. A Parameterized Formulation for the Maximum Number of Runs Problem , 2011, Stringology.
[18] Wojciech Rytter,et al. Squares, cubes, and time-space efficient string searching , 1995, Algorithmica.
[19] Michael G. Main,et al. Detecting leftmost maximal periodicities , 1989, Discret. Appl. Math..
[20] Maxime Crochemore,et al. An Optimal Algorithm for Computing the Repetitions in a Word , 1981, Inf. Process. Lett..
[21] Lucian Ilie,et al. The "runs" conjecture , 2011, Theor. Comput. Sci..