Using orthogonal visual servoing errors for classifying terrain

A novel, centimeter-scale crawling robot has been developed to address applications in surveillance, search-and-rescue, and planetary exploration. This places constraints on size and durability that minimizes the mechanism. As a result, a dual-use design employing two arms for both manipulation and locomotion was conceived. In a complementary fashion, this paper investigates the dual-use of visual servoing error. Visual servoing can be used by a mobile robot for homing and tracking. But because ground-based mobile robots are inherently planar, the control methodology (steering) is one-dimensional. The two-dimensional nature of image-based servoing leaves additional information content to be used in other contexts. We explore this information in the context of classifying terrain conditions. An outline for gait adaptation based on this is suggested for future work.

[1]  Takeo Kanade,et al.  Control system of the self-mobile space manipulator , 1994, IEEE Trans. Control. Syst. Technol..

[2]  Takeo Kanade,et al.  Visual tracking of a moving target by a camera mounted on a robot: a combination of control and vision , 1993, IEEE Trans. Robotics Autom..

[3]  Pradeep K. Khosla,et al.  Force and vision resolvability for assimilating disparate sensory feedback , 1996, IEEE Trans. Robotics Autom..

[4]  Nikolaos Papanikolopoulos,et al.  Active video system for a miniature reconnaissance robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[5]  Oussama Khatib,et al.  Mobile manipulation: The robotic assistant , 1999, Robotics Auton. Syst..

[6]  Fumihito Arai,et al.  Swing and locomotion control for a two-link brachiation robot , 1994 .

[7]  Peter I. Corke,et al.  Video- Rate Visual Servoing for Robots , 1989, ISER.

[8]  Dinesh K. Pai,et al.  Platonic beasts: a new family of multilimbed robots , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[9]  Pradeep K. Khosla,et al.  The Chimera Methodology: Designing Dynamically Reconfigurable and Reusable Real-Time Software Using Port-Based Objects , 1996, Int. J. Softw. Eng. Knowl. Eng..

[10]  Yasuhiro Fukuoka,et al.  Adaptive dynamic walking of the quadruped on irregular terrain-autonomous adaptation using neural system model , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[11]  Mark Yim,et al.  New locomotion gaits , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[12]  Richard M. Voyles TerminatorBot: a robot with dual-use arms for manipulation and locomotion , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[13]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[14]  Patrick Rives,et al.  A new approach to visual servoing in robotics , 1992, IEEE Trans. Robotics Autom..

[15]  Dinesh K. Pai,et al.  A mobile manipulator , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[16]  Saifallah Benjaafar,et al.  A miniature robotic system for reconnaissance and surveillance , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[17]  Patrick Rives,et al.  A new approach to visual servoing in robotics , 1992, IEEE Trans. Robotics Autom..

[18]  Bruce H. Krogh,et al.  Path planning for mobile manipulators for multiple task execution , 1991, IEEE Trans. Robotics Autom..

[19]  W. D. Morse,et al.  An Overview of the Accident Response Mobile Manipulation System (ARMMS) , 1994 .

[20]  R. Voyles Novel Gaits for a Novel Crawling / Grasping Mechanism , 2000 .

[21]  Yangsheng Xu,et al.  A separable combination of wheeled rover and arm mechanism: (DM)/sup 2/ , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[22]  Fumihito Arai,et al.  Swing and locomotion control for a two-link brachiation robot , 1993, IEEE Control Systems.