Moderately Hard Functions: Definition, Instantiations, and Applications
暂无分享,去创建一个
[1] Adam Stubblefield,et al. Using Client Puzzles to Protect TLS , 2001, USENIX Security Symposium.
[2] F. Frances Yao,et al. Design and Analysis of Password-Based Key Derivation Functions , 2005, IEEE Trans. Inf. Theory.
[3] Mihir Bellare,et al. Multi-instance Security and Its Application to Password-Based Cryptography , 2012, CRYPTO.
[4] Stefan Dziembowski,et al. Key-Evolution Schemes Resilient to Space-Bounded Leakage , 2011, CRYPTO.
[5] Alex Biryukov,et al. Tradeoff Cryptanalysis of Memory-Hard Functions , 2015, ASIACRYPT.
[6] Nir Bitansky,et al. Time-Lock Puzzles from Randomized Encodings , 2016, IACR Cryptol. ePrint Arch..
[7] Ken Thompson,et al. Password security: a case history , 1979, CACM.
[8] Moni Naor,et al. Pebbling and Proofs of Work , 2005, CRYPTO.
[9] Stephen A. Cook,et al. An observation on time-storage trade off , 1973, J. Comput. Syst. Sci..
[10] Stefan Dziembowski,et al. One-Time Computable Self-erasing Functions , 2011, TCC.
[11] Jonathan Katz,et al. Fixing Cracks in the Concrete: Random Oracles with Auxiliary Input, Revisited , 2017, EUROCRYPT.
[12] Alex Biryukov,et al. Argon2: New Generation of Memory-Hard Functions for Password Hashing and Other Applications , 2016, 2016 IEEE European Symposium on Security and Privacy (EuroS&P).
[13] Ran Canetti,et al. Universally composable security: a new paradigm for cryptographic protocols , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.
[14] Moni Naor,et al. Moderately Hard Functions: From Complexity to Spam Fighting , 2003, FSTTCS.
[15] Mihir Bellare,et al. Verifiable partial key escrow , 1997, CCS '97.
[16] Alex Biryukov,et al. Equihash: Asymmetric Proof-of-Work Based on the Generalized Birthday Problem , 2016, NDSS.
[17] Aggelos Kiayias,et al. Proofs of Work for Blockchain Protocols , 2017, IACR Cryptol. ePrint Arch..
[18] Hovav Shacham,et al. Careful with Composition: Limitations of the Indifferentiability Framework , 2011, EUROCRYPT.
[19] Moni Naor,et al. Pricing via Processing or Combatting Junk Mail , 1992, CRYPTO.
[20] Ronald L. Rivest,et al. Time-lock Puzzles and Timed-release Crypto , 1996 .
[21] Aggelos Kiayias,et al. The Bitcoin Backbone Protocol: Analysis and Applications , 2015, EUROCRYPT.
[22] Hong-Sheng Zhou,et al. TwinsCoin: A Cryptocurrency via Proof-of-Work and Proof-of-Stake , 2018, BCC '18.
[23] Colin Percival. STRONGER KEY DERIVATION VIA SEQUENTIAL MEMORY-HARD FUNCTIONS , 2009 .
[24] Stefano Tessaro,et al. Scrypt Is Maximally Memory-Hard , 2017, EUROCRYPT.
[25] Stefan Lucks,et al. Catena: A Memory-Consuming Password Scrambler , 2013, IACR Cryptol. ePrint Arch..
[26] Hongjun Wu. POMELO A Password Hashing Algorithm (Version 2) , 2015 .
[27] Bogdan Warinschi,et al. Security Notions and Generic Constructions for Client Puzzles , 2009, ASIACRYPT.
[28] Colin Boyd,et al. Stronger Difficulty Notions for Client Puzzles and Denial-of-Service-Resistant Protocols , 2011, CT-RSA.
[29] Giuseppe Ateniese,et al. Proofs of Space: When Space Is of the Essence , 2014, SCN.
[30] Ghassan O. Karame,et al. Low-Cost Client Puzzles Based on Modular Exponentiation , 2010, ESORICS.
[31] Joël Alwen,et al. High Parallel Complexity Graphs and Memory-Hard Functions , 2015, IACR Cryptol. ePrint Arch..
[32] Sebastian Faust,et al. Efficient Algorithms for Broadcast and Consensus Based on Proofs of Work , 2017, IACR Cryptol. ePrint Arch..
[33] Ueli Maurer,et al. Abstract Cryptography , 2011, ICS.
[34] Pekka Nikander,et al. DOS-Resistant Authentication with Client Puzzles , 2000, Security Protocols Workshop.
[35] Ari Juels,et al. $evwu Dfw , 1998 .
[36] Dan Boneh,et al. Balloon Hashing: A Memory-Hard Function Providing Provable Protection Against Sequential Attacks , 2016, ASIACRYPT.
[37] Birgit Pfitzmann,et al. A model for asynchronous reactive systems and its application to secure message transmission , 2001, Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001.
[38] Ueli Maurer,et al. Query-Complexity Amplification for Random Oracles , 2015, ICITS.
[39] Arjan Jeckmans,et al. Practical Client Puzzle from Repeated Squaring , 2009 .
[40] Robert E. Tarjan,et al. Asymptotically tight bounds on time-space trade-offs in a pebble game , 1982, JACM.
[41] Jeremiah Blocki,et al. Depth-Robust Graphs and Their Cumulative Memory Complexity , 2017, EUROCRYPT.
[42] Leonid Reyzin,et al. On the Memory-Hardness of Data-Independent Password-Hashing Functions , 2016, IACR Cryptol. ePrint Arch..
[43] Stefan Dziembowski,et al. Proofs of Space , 2015, CRYPTO.
[44] Bogdan Groza,et al. On Chained Cryptographic Puzzles , 2006 .
[45] Geraint Price. A General Attack Model on Hash-Based Client Puzzles , 2003, IMACC.
[46] Adam Back,et al. Hashcash - A Denial of Service Counter-Measure , 2002 .
[47] Vladimir Kolmogorov,et al. On the Complexity of Scrypt and Proofs of Space in the Parallel Random Oracle Model , 2016, EUROCRYPT.
[48] Alex Biryukov,et al. Symmetrically and Asymmetrically Hard Cryptography ( Full Version ) * , 2017 .
[49] Qiang Tang,et al. On Non-Parallelizable Deterministic Client Puzzle Scheme with Batch Verification Modes , 2010 .
[50] Ran Canetti,et al. Hardness Amplification of Weakly Verifiable Puzzles , 2005, TCC.
[51] Ueli Maurer,et al. Constructive Cryptography - A New Paradigm for Security Definitions and Proofs , 2011, TOSCA.
[52] Colin Boyd,et al. Toward Non-parallelizable Client Puzzles , 2007, CANS.
[53] Ran Canetti,et al. Security and Composition of Multiparty Cryptographic Protocols , 2000, Journal of Cryptology.
[54] Jeremiah Blocki,et al. Efficiently Computing Data-Independent Memory-Hard Functions , 2016, CRYPTO.
[55] Martin Mauve,et al. Non-Parallelizable and Non-Interactive Client Puzzles from Modular Square Roots , 2011, 2011 Sixth International Conference on Availability, Reliability and Security.
[56] Ted Wobber,et al. Moderately hard, memory-bound functions , 2005, TOIT.
[57] Ueli Maurer,et al. From Indifferentiability to Constructive Cryptography (and Back) , 2016, TCC.
[58] Jeremiah Blocki,et al. Towards Practical Attacks on Argon2i and Balloon Hashing , 2017, 2017 IEEE European Symposium on Security and Privacy (EuroS&P).
[59] Bogdan Warinschi,et al. Cryptographic puzzles and DoS resilience, revisited , 2014, Des. Codes Cryptogr..
[60] Dominique Unruh,et al. Random Oracles and Auxiliary Input , 2007, CRYPTO.
[61] S. Vadhan,et al. Time-Lock Puzzles in the Random Oracle , 2011 .
[62] C. Thomborson,et al. Area-time complexity for VLSI , 1979, STOC.
[63] Manoj Prabhakaran,et al. Resource Fairness and Composability of Cryptographic Protocols , 2006, Journal of Cryptology.
[64] Ueli Maurer,et al. Indifferentiability, Impossibility Results on Reductions, and Applications to the Random Oracle Methodology , 2004, TCC.
[65] Ueli Maurer,et al. Indistinguishability of Random Systems , 2002, EUROCRYPT.
[66] Douglas Stebila,et al. Towards Denial-of-Service-Resilient Key Agreement Protocols , 2009, ACISP.
[67] Ueli Maurer,et al. Resource-Restricted Indifferentiability , 2013, IACR Cryptol. ePrint Arch..
[68] Moni Naor,et al. On Memory-Bound Functions for Fighting Spam , 2003, CRYPTO.
[69] Marcin Andrychowicz,et al. Distributed Cryptography Based on the Proofs of Work , 2014, IACR Cryptol. ePrint Arch..
[70] Jeremiah Blocki,et al. Practical Graphs for Optimal Side-Channel Resistant Memory-Hard Functions , 2017, IACR Cryptol. ePrint Arch..
[71] Salil P. Vadhan,et al. Publicly verifiable proofs of sequential work , 2013, ITCS '13.
[72] Alon Rosen,et al. Public Verification of Private Effort , 2015, TCC.