Decision Problems for Nash Equilibria in Stochastic Games

We analyse the computational complexity of finding Nash equilibria in stochastic multiplayer games with ω-regular objectives. While the existence of an equilibrium whose payoff falls into a certain interval may be undecidable, we single out several decidable restrictions of the problem. First, restricting the search space to stationary, or pure stationary, equilibria results in problems that are typically contained in PSPACE and NP, respectively. Second, we show that the existence of an equilibrium with a binary payoff (i.e. an equilibrium where each player either wins or loses with probability 1) is decidable. We also establish that the existence of a Nash equilibrium with a certain binary payoff entails the existence of an equilibrium with the same payoff in pure, finite-state strategies.

[1]  P. Ramadge,et al.  Supervisory control of a class of discrete event processes , 1987 .

[2]  Sylvain Sorin,et al.  Stochastic Games and Applications , 2003 .

[3]  Wieslaw Zielonka,et al.  Perfect-Information Stochastic Parity Games , 2004, FoSSaCS.

[4]  Amir Pnueli,et al.  On the synthesis of a reactive module , 1989, POPL '89.

[5]  Krishnendu Chatterjee,et al.  Simple Stochastic Parity Games , 2003, CSL.

[6]  Kousha Etessami,et al.  Multi-Objective Model Checking of Markov Decision Processes , 2007, Log. Methods Comput. Sci..

[7]  Florian Horn,et al.  Optimal Strategies in Perfect-Information Stochastic Games with Tail Winning Conditions , 2008, ArXiv.

[8]  Krishnendu Chatterjee,et al.  Trading memory for randomness , 2004, First International Conference on the Quantitative Evaluation of Systems, 2004. QEST 2004. Proceedings..

[9]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[10]  Ariel Rubinstein,et al.  A Course in Game Theory , 1995 .

[11]  Igor Walukiewicz,et al.  How much memory is needed to win infinite games? , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[12]  Zohar Manna,et al.  The Temporal Logic of Reactive and Concurrent Systems , 1991, Springer New York.

[13]  J. R. Büchi,et al.  Solving sequential conditions by finite-state strategies , 1969 .

[14]  Alex K. Simpson,et al.  Computational Adequacy in an Elementary Topos , 1998, CSL.

[15]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[16]  Peter Bro Miltersen,et al.  2 The Task of a Numerical Analyst , 2022 .

[17]  Yuri Gurevich,et al.  Trees, automata, and games , 1982, STOC '82.

[18]  Zohar Manna,et al.  Formal verification of probabilistic systems , 1997 .

[19]  E. Allen Emerson,et al.  The Complexity of Tree Automata and Logics of Programs , 1999, SIAM J. Comput..

[20]  T. Henzinger,et al.  Stochastic o-regular games , 2007 .

[21]  T. E. S. Raghavan,et al.  Algorithms for stochastic games — A survey , 1991, ZOR Methods Model. Oper. Res..

[22]  Donald A. Martin,et al.  The determinacy of Blackwell games , 1998, Journal of Symbolic Logic.

[23]  Anne Condon,et al.  The Complexity of Stochastic Games , 1992, Inf. Comput..

[24]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[25]  E. Allen Emerson,et al.  Tree automata, mu-calculus and determinacy , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[26]  Xiaotie Deng,et al.  Settling the Complexity of Two-Player Nash Equilibrium , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[27]  J. Filar,et al.  Competitive Markov Decision Processes , 1996 .

[28]  Wolfgang Thomas,et al.  On the Synthesis of Strategies in Infinite Games , 1995, STACS.

[29]  Michael Ummels,et al.  The Complexity of Nash Equilibria in Infinite Multiplayer Games , 2008, FoSSaCS.

[30]  Leon G. Higley,et al.  Forensic Entomology: An Introduction , 2009 .

[31]  Dominik Wojtczak,et al.  The Complexity of Nash Equilibria in Simple Stochastic Multiplayer Games , 2009, ICALP.

[32]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[33]  Thomas A. Henzinger,et al.  Concurrent omega-regular games , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[34]  Krishnendu Chatterjee,et al.  Quantitative stochastic parity games , 2004, SODA '04.

[35]  Mihalis Yannakakis,et al.  The complexity of probabilistic verification , 1995, JACM.

[36]  Annabelle McIver,et al.  Games, Probability and the Quantitative µ-Calculus qMµ , 2002, LPAR.

[37]  J. Nash Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Krishnendu Chatterjee,et al.  The Complexity of Stochastic Rabin and Streett Games' , 2005, ICALP.

[39]  Paul W. Goldberg,et al.  The complexity of computing a Nash equilibrium , 2006, STOC '06.

[40]  Ian Stark,et al.  Free-Algebra Models for the pi-Calculus , 2005, FoSSaCS.

[41]  Anuj Dawar,et al.  Complexity Bounds for Regular Games , 2005, MFCS.

[42]  Michael Ummels,et al.  Rational Behaviour and Strategy Construction in Infinite Multiplayer Games , 2006, FSTTCS.

[43]  A Tarlecki,et al.  On Nash equilibria in stochastic games , 2004 .

[44]  Michel Rigo,et al.  Abstract numeration systems and tilings , 2005 .