A Scalable, Interpretable, Verifiable&Differentiable Logic Gate Convolutional Neural Network Architecture From Truth Tables

We propose $\mathcal{T}$ruth $\mathcal{T}$able net ($\mathcal{TT}$net), a novel Convolutional Neural Network (CNN) architecture that addresses, by design, the open challenges of interpretability, formal verification, and logic gate conversion. $\mathcal{TT}$net is built using CNNs' filters that are equivalent to tractable truth tables and that we call Learning Truth Table (LTT) blocks. The dual form of LTT blocks allows the truth tables to be easily trained with gradient descent and makes these CNNs easy to interpret, verify and infer. Specifically, $\mathcal{TT}$net is a deep CNN model that can be automatically represented, after post-training transformation, as a sum of Boolean decision trees, or as a sum of Disjunctive/Conjunctive Normal Form (DNF/CNF) formulas, or as a compact Boolean logic circuit. We demonstrate the effectiveness and scalability of $\mathcal{TT}$net on multiple datasets, showing comparable interpretability to decision trees, fast complete/sound formal verification, and scalable logic gate representation, all compared to state-of-the-art methods. We believe this work represents a step towards making CNNs more transparent and trustworthy for real-world critical applications.

[1]  Joao Marques-Silva Logic-Based Explainability in Machine Learning , 2022, RW.

[2]  C. Borgelt,et al.  Deep Differentiable Logic Gate Networks , 2022, NeurIPS.

[3]  F. Yang,et al.  Learning Interpretable Decision Rule Sets: A Submodular Optimization Approach , 2022, NeurIPS.

[4]  Clark W. Barrett,et al.  Scalable verification of GNN-based job schedulers , 2022, Proc. ACM Program. Lang..

[5]  Pierre Le Bodic,et al.  Learning Optimal Decision Sets and Lists with SAT , 2021, J. Artif. Intell. Res..

[6]  Bubacarr Bah,et al.  Efficient and Robust Mixed-Integer Optimization Methods for Training Binarized Deep Neural Networks , 2021, ArXiv.

[7]  Pushmeet Kohli,et al.  Making sense of raw input , 2021, Artif. Intell..

[8]  Jianyong Wang,et al.  Scalable Rule-Based Representation Learning for Interpretable Classification , 2021, NeurIPS.

[9]  Taylor Johnson,et al.  The Second International Verification of Neural Networks Competition (VNN-COMP 2021): Summary and Results , 2021, ArXiv.

[10]  Martin Rinard,et al.  Verifying Low-dimensional Input Neural Networks via Input Quantization , 2021, SAS.

[11]  Taolue Chen,et al.  BDD4BNN: A BDD-based Quantitative Analysis Framework for Binarized Neural Networks , 2021, CAV.

[12]  Mark Niklas Müller,et al.  PRIMA: general and precise neural network certification via scalable convex hull approximations , 2021, Proc. ACM Program. Lang..

[13]  Daniel Fryer,et al.  Shapley values for feature selection: The good, the bad, and the axioms , 2021, IEEE Access.

[14]  Di He,et al.  Towards Certifying L-infinity Robustness using Neural Networks with L-inf-dist Neurons , 2021, ICML.

[15]  Vasco M. Manquinho,et al.  Pseudo-Boolean and Cardinality Constraints , 2021, Handbook of Satisfiability.

[16]  Dan Alistarh,et al.  Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks , 2021, J. Mach. Learn. Res..

[17]  Peter Tiňo,et al.  A Survey on Neural Network Interpretability , 2020, IEEE Transactions on Emerging Topics in Computational Intelligence.

[18]  Yihan Wang,et al.  Fast and Complete: Enabling Complete Neural Network Verification with Rapid and Massively Parallel Incomplete Verifiers , 2020, ICLR.

[19]  S. Gelly,et al.  An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale , 2020, ICLR.

[20]  Nicolas Flammarion,et al.  RobustBench: a standardized adversarial robustness benchmark , 2020, NeurIPS Datasets and Benchmarks.

[21]  Rishabh Singh,et al.  Scaling Symbolic Methods using Gradients for Neural Model Explanation , 2020, ICLR.

[22]  Mark Chen,et al.  Language Models are Few-Shot Learners , 2020, NeurIPS.

[23]  Martin Rinard,et al.  Efficient Exact Verification of Binarized Neural Networks , 2020, NeurIPS.

[24]  Nina Narodytska,et al.  In Search for a SAT-friendly Binarized Neural Network Architecture , 2020, ICLR.

[25]  Geoffrey E. Hinton,et al.  Neural Additive Models: Interpretable Machine Learning with Neural Nets , 2020, NeurIPS.

[26]  Meng Ma,et al.  Extract interpretability-accuracy balanced rules from artificial neural networks: A review , 2020, Neurocomputing.

[27]  Adnan Darwiche,et al.  On Tractable Representations of Binary Neural Networks , 2020, KR.

[28]  Kai Jia,et al.  Exploiting Verified Neural Networks via Floating Point Numerical Error , 2020, SAS.

[29]  Cho-Jui Hsieh,et al.  Automatic Perturbation Analysis for Scalable Certified Robustness and Beyond , 2020, NeurIPS.

[30]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[31]  Brandon M. Greenwell,et al.  Interpretable Machine Learning , 2019, Hands-On Machine Learning with R.

[32]  Andre Araujo,et al.  Computing Receptive Fields of Convolutional Neural Networks , 2019, Distill.

[33]  V. Gottemukkula POLYNOMIAL ACTIVATION FUNCTIONS , 2019 .

[34]  Joao Marques-Silva,et al.  Assessing Heuristic Machine Learning Explanations with Model Counting , 2019, SAT.

[35]  Shweta Shinde,et al.  Quantitative Verification of Neural Networks and Its Security Applications , 2019, CCS.

[36]  Cho-Jui Hsieh,et al.  Towards Stable and Efficient Training of Verifiably Robust Neural Networks , 2019, ICLR.

[37]  Matthias Hein,et al.  Provably Robust Boosted Decision Stumps and Trees against Adversarial Attacks , 2019, NeurIPS.

[38]  Sanjeeb Dash,et al.  Generalized Linear Rule Models , 2019, ICML.

[39]  Peter Y. K. Cheung,et al.  LUTNet: Rethinking Inference in FPGA Soft Logic , 2019, 2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM).

[40]  Matthias Bethge,et al.  Approximating CNNs with Bag-of-local-Features models works surprisingly well on ImageNet , 2019, ICLR.

[41]  Aleksander Madry,et al.  On Evaluating Adversarial Robustness , 2019, ArXiv.

[42]  Aleksander Madry,et al.  Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability , 2018, ICLR.

[43]  Wei Liu,et al.  Bi-Real Net: Enhancing the Performance of 1-bit CNNs With Improved Representational Capability and Advanced Training Algorithm , 2018, ECCV.

[44]  Joao Marques-Silva,et al.  PySAT: A Python Toolkit for Prototyping with SAT Oracles , 2018, SAT.

[45]  Matthew Mirman,et al.  Differentiable Abstract Interpretation for Provably Robust Neural Networks , 2018, ICML.

[46]  J. Zico Kolter,et al.  Scaling provable adversarial defenses , 2018, NeurIPS.

[47]  Pushmeet Kohli,et al.  Training verified learners with learned verifiers , 2018, ArXiv.

[48]  Sanjeeb Dash,et al.  Boolean Decision Rules via Column Generation , 2018, NeurIPS.

[49]  Carlos Guestrin,et al.  Anchors: High-Precision Model-Agnostic Explanations , 2018, AAAI.

[50]  Aditi Raghunathan,et al.  Certified Defenses against Adversarial Examples , 2018, ICLR.

[51]  Mark Sandler,et al.  MobileNetV2: Inverted Residuals and Linear Bottlenecks , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[52]  Russ Tedrake,et al.  Evaluating Robustness of Neural Networks with Mixed Integer Programming , 2017, ICLR.

[53]  J. Zico Kolter,et al.  Provable defenses against adversarial examples via the convex outer adversarial polytope , 2017, ICML.

[54]  Chung-Hao Huang,et al.  Verification of Binarized Neural Networks via Inter-neuron Factoring - (Short Paper) , 2017, VSTTE.

[55]  Clark W. Barrett,et al.  Provably Minimally-Distorted Adversarial Examples , 2017 .

[56]  Leonid Ryzhyk,et al.  Verifying Properties of Binarized Deep Neural Networks , 2017, AAAI.

[57]  Alessio Lomuscio,et al.  An approach to reachability analysis for feed-forward ReLU neural networks , 2017, ArXiv.

[58]  Aleksander Madry,et al.  Towards Deep Learning Models Resistant to Adversarial Attacks , 2017, ICLR.

[59]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[60]  Sepp Hochreiter,et al.  Self-Normalizing Neural Networks , 2017, NIPS.

[61]  Rüdiger Ehlers,et al.  Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks , 2017, ATVA.

[62]  Chih-Hong Cheng,et al.  Maximum Resilience of Artificial Neural Networks , 2017, ATVA.

[63]  Margo I. Seltzer,et al.  Learning Certifiably Optimal Rule Lists , 2017, KDD.

[64]  William Welser,et al.  An Intelligence in Our Image: The Risks of Bias and Errors in Artificial Intelligence , 2017 .

[65]  Dimitris Bertsimas,et al.  Optimal classification trees , 2017, Machine Learning.

[66]  Mykel J. Kochenderfer,et al.  Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks , 2017, CAV.

[67]  Alessio Lomuscio,et al.  MCMAS: an open-source model checker for the verification of multi-agent systems , 2017, International Journal on Software Tools for Technology Transfer.

[68]  Andy R. Terrel,et al.  SymPy: Symbolic computing in Python , 2017, PeerJ Prepr..

[69]  Frank Hutter,et al.  SGDR: Stochastic Gradient Descent with Warm Restarts , 2016, ICLR.

[70]  Jure Leskovec,et al.  Interpretable Decision Sets: A Joint Framework for Description and Prediction , 2016, KDD.

[71]  Shuchang Zhou,et al.  DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients , 2016, ArXiv.

[72]  Francesco Visin,et al.  A guide to convolution arithmetic for deep learning , 2016, ArXiv.

[73]  Ali Farhadi,et al.  XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks , 2016, ECCV.

[74]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[75]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[76]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[77]  Tobias Philipp,et al.  A More Compact Translation of Pseudo-Boolean Constraints into CNF Such That Generalized Arc Consistency Is Maintained , 2014, KI.

[78]  Alex Alves Freitas,et al.  Comprehensible classification models: a position paper , 2014, SKDD.

[79]  Steffen Hölldobler,et al.  A Compact Encoding of Pseudo-Boolean Constraints into SAT , 2012, KI.

[80]  Mark H. Liffiton,et al.  A Cardinality Solver: More Expressive Constraints for Free - (Poster Presentation) , 2012, SAT.

[81]  Albert Oliveras,et al.  BDDs for Pseudo-Boolean Constraints - Revisited , 2011, SAT.

[82]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[83]  Barry O'Sullivan,et al.  Minimising Decision Tree Size as Combinatorial Optimisation , 2009, CP.

[84]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[85]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[86]  Niklas Sörensson,et al.  Translating Pseudo-Boolean Constraints into SAT , 2006, J. Satisf. Boolean Model. Comput..

[87]  Tiziano Villa,et al.  Complexity of two-level logic minimization , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[88]  João Gama,et al.  Learning with Drift Detection , 2004, SBIA.

[89]  Pierre Marquis,et al.  A Knowledge Compilation Map , 2002, J. Artif. Intell. Res..

[90]  L. Breiman Random Forests , 2001, Encyclopedia of Machine Learning and Data Mining.

[91]  Saburo Muroga,et al.  Binary Decision Diagrams , 2000, The VLSI Handbook.

[92]  Yoram Singer,et al.  A simple, fast, and effective rule learner , 1999, AAAI 1999.

[93]  Nir Friedman,et al.  Bayesian Network Classifiers , 1997, Machine Learning.

[94]  Ute St. Clair,et al.  Fuzzy Set Theory: Foundations and Applications , 1997 .

[95]  William W. Cohen Fast Effective Rule Induction , 1995, ICML.

[96]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[97]  J. Ross Quinlan,et al.  Simplifying decision trees , 1987, Int. J. Hum. Comput. Stud..

[98]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[99]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[100]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[101]  C. Y. Lee Representation of switching circuits by binary-decision programs , 1959 .

[102]  Willard Van Orman Quine,et al.  The Problem of Simplifying Truth Functions , 1952 .

[103]  Archie Blake,et al.  Corrections to Canonical expressions in Boolean algebra , 1938, Journal of Symbolic Logic.

[104]  L. Locascio,et al.  Artificial Intelligence Risk Management Framework (AI RMF 1.0) , 2023 .

[105]  Cho-Jui Hsieh,et al.  Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Complete and Incomplete Neural Network Verification , 2021, ArXiv.

[106]  Nikil D. Dutt,et al.  pyEDA: An Open-Source Python Toolkit for Pre-processing and Feature Extraction of Electrodermal Activity , 2021, ANT/EDI40.

[107]  Adnan Darwiche,et al.  Verifying Binarized Neural Networks by Local Automaton Learning , 2019 .

[108]  Adnan Darwiche,et al.  Compiling Neural Networks into Tractable Boolean Circuits , 2019 .

[109]  Ran El-Yaniv,et al.  Binarized Neural Networks , 2016, ArXiv.

[110]  Ronald L. Rivest,et al.  Learning decision lists , 2004, Machine Learning.