Systematic Handling of Heterogeneous Geometric Primitives in Graph-SLAM Optimization

In this letter, we propose a pose-landmark graph optimization back-end that supports maps consisting of points, lines, or planes. Our back-end allows representing both homogeneous (<italic>point–point</italic>, <italic>line–line</italic>, <italic>plane–plane</italic>) and heterogeneous measurements (<italic>point-on-line</italic>, <italic>point-on-plane</italic>, <italic>line-on-plane</italic>). Rather than treating all cases independently, we use a unified formulation that leads to both a compact derivation and a concise implementation. The additional geometric information, deriving from the use of higher dimension primitives and constraints, yields to increased robustness and widens the convergence basin of our method. We evaluate the proposed formulation both on synthetic and raw data. Finally, we made available an open-source implementation to replicate the experiments.

[1]  Sebastian Thrun,et al.  FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges , 2003, IJCAI 2003.

[2]  Wolfram Burgard,et al.  Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters , 2007, IEEE Transactions on Robotics.

[3]  Roland Siegwart,et al.  A comparison of line extraction algorithms using 2D range data for indoor mobile robotics , 2007, Auton. Robots.

[4]  Ramón Galán,et al.  Building geometric feature based maps for indoor service robots , 2006, Robotics Auton. Syst..

[5]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[6]  Giorgio Grisetti,et al.  Matrix Difference in Pose-Graph Optimization , 2018, ArXiv.

[7]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[8]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[9]  Gaurav S. Sukhatme,et al.  Relaxation on a mesh: a formalism for generalized localization , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[10]  Frank Dellaert,et al.  Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing , 2006, Int. J. Robotics Res..

[11]  Juan D. Tardós,et al.  ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras , 2016, IEEE Transactions on Robotics.

[12]  Jörg Stückler,et al.  CPA-SLAM: Consistent plane-model alignment for direct RGB-D SLAM , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[13]  Yan Lu,et al.  Robust RGB-D Odometry Using Point and Line Features , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[14]  Wolfram Burgard,et al.  G2o: A general framework for graph optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[15]  Daniel Cremers,et al.  Dense visual SLAM for RGB-D cameras , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  W. Clem Karl,et al.  Line detection in images through regularized hough transform , 2006, IEEE Transactions on Image Processing.

[17]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[18]  Gamini Dissanayake,et al.  How far is SLAM from a linear least squares problem? , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[19]  John J. Leonard,et al.  Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age , 2016, IEEE Transactions on Robotics.

[20]  Michael Kaess,et al.  Simultaneous localization and mapping with infinite planes , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[21]  G. Dissanayake,et al.  Extending the Limits of Feature-Based SLAM With B-Splines , 2009, IEEE Transactions on Robotics.

[22]  Paul H. J. Kelly,et al.  Dense planar SLAM , 2014, 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[23]  Giorgio Grisetti,et al.  HBST: A Hamming Distance Embedding Binary Search Tree for Feature-Based Visual Place Recognition , 2018, IEEE Robotics and Automation Letters.

[24]  Diego Rodríguez-Losada,et al.  Feature based graph SLAM with high level representation using rectangles , 2015, Robotics Auton. Syst..

[25]  Giorgio Grisetti,et al.  ProSLAM: Graph SLAM from a Programmer's Perspective , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[26]  Bartolomeo Della Corte,et al.  Unified Representation and Registration of Heterogeneous Sets of Geometric Primitives , 2019, IEEE Robotics and Automation Letters.

[27]  Kurt Konolige,et al.  Incremental mapping of large cyclic environments , 1999, Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375).

[28]  Daniel Cremers,et al.  Stereo DSO: Large-Scale Direct Sparse Visual Odometry with Stereo Cameras , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[29]  Ji Zhang,et al.  Visual-lidar odometry and mapping: low-drift, robust, and fast , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[30]  Andrew J. Davison,et al.  A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[31]  Edwin Olson,et al.  Fast iterative alignment of pose graphs with poor initial estimates , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[32]  Frank Dellaert,et al.  iSAM: Fast Incremental Smoothing and Mapping with Efficient Data Association , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[33]  Frank Dellaert,et al.  iSAM2: Incremental smoothing and mapping using the Bayes tree , 2012, Int. J. Robotics Res..

[34]  Wolfram Burgard,et al.  A Tutorial on Graph-Based SLAM , 2010, IEEE Intelligent Transportation Systems Magazine.

[35]  Wolfgang Hess,et al.  Real-time loop closure in 2D LIDAR SLAM , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[36]  Francesc Moreno-Noguer,et al.  PL-SLAM: Real-time monocular visual SLAM with points and lines , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[37]  Wolfram Burgard,et al.  A Tree Parameterization for Efficiently Computing Maximum Likelihood Maps using Gradient Descent , 2007, Robotics: Science and Systems.

[38]  Shichao Yang,et al.  Pop-up SLAM: Semantic monocular plane SLAM for low-texture environments , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[39]  Tom Duckett,et al.  A multilevel relaxation algorithm for simultaneous localization and mapping , 2005, IEEE Transactions on Robotics.

[40]  Stephen R. Marsland,et al.  Fast, On-Line Learning of Globally Consistent Maps , 2002, Auton. Robots.

[41]  Maria Teresa Lazaro,et al.  Efficient Long-term Mapping in Dynamic Environments , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[42]  J. M. M. Montiel,et al.  The SPmap: a probabilistic framework for simultaneous localization and map building , 1999, IEEE Trans. Robotics Autom..