Automatic quick-shift method for color image segmentation

This paper develops a segmentation method using an automatic quick-shift method based on illumination invariant representation of color images. The proposed method segments images into homogeneous regions by applying the quick-shift method with initial parameters, and then automatically gets the final segmented image by changing the quick-shift parameters values. This method is valid for large size images. A quantization process is applied to the invariant image to be used as a reference image. Changing parameters values in iterations instead of using a specific value made the proposed algorithm flexible and robust against different image characteristics. The effectiveness of the proposed method for a variety of images including different objects of metals and dielectrics are examined in experiments by using our color imaging system.

[1]  Stefano Soatto,et al.  Motion segmentation with occlusions on the superpixel graph , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[2]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  David J. Kriegman,et al.  Beyond Lambert: reconstructing specular surfaces using color , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[4]  Stefano Soatto,et al.  Class segmentation and object localization with superpixel neighborhoods , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[5]  Arnold W. M. Smeulders,et al.  Color Invariance , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Nasser Kehtarnavaz,et al.  DWT-based scene-adaptive color quantization , 2005, Real Time Imaging.

[7]  Takahiko Horiuchi,et al.  Invariant representation for spectral reflectance images and its application , 2011, EURASIP J. Image Video Process..

[8]  Sven J. Dickinson,et al.  TurboPixels: Fast Superpixels Using Geometric Flows , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Takahiko Horiuchi,et al.  Illumination-invariant representation for natural color images and its application , 2012, 2012 IEEE Southwest Symposium on Image Analysis and Interpretation.

[10]  Arnold W. M. Smeulders,et al.  Color-based object recognition , 1997, Pattern Recognit..

[11]  Jitendra Malik,et al.  Learning a classification model for segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[12]  Jianbo Shi,et al.  Spectral segmentation with multiscale graph decomposition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[13]  Stefano Soatto,et al.  Quick Shift and Kernel Methods for Mode Seeking , 2008, ECCV.

[14]  Ian Reid,et al.  gSLIC: a real-time implementation of SLIC superpixel segmentation , 2011 .

[15]  S. Athi Narayanan,et al.  A Hybrid Method for Image Quantization , 2009 .

[16]  S. Avidan,et al.  Seam carving for content-aware image resizing , 2007, SIGGRAPH 2007.

[17]  Jitendra Malik,et al.  Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Takahiko Horiuchi Similarity measure of labelled images , 2004, ICPR 2004.

[19]  Muhammed Salem,et al.  Automatic Color Image Segmentation Based on Illumination Invariant and Superpixelization , 2012, AMLTA.

[20]  Katsushi Ikeuchi,et al.  Separating Reflection Components of Textured Surfaces Using a Single Image , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Umar Mohammed,et al.  Superpixel lattices , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Sing Bing Kang,et al.  Stereo for Image-Based Rendering using Image Over-Segmentation , 2007, International Journal of Computer Vision.

[23]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.