Assessing High-Throughput Descriptors for Prediction of Transparent Conductors

The growth of materials databases has yielded significant quantities of data to mine for new energy materials using high-throughput screening methodologies. One application of interest to energy and optoelectronics is the prediction of new high performing p-type transparent conductors (TCs). However, screening methods for such materials have never been validated over the breadth of computed materials properties. In this study, we compile an experimental data set of 74 bulk crystal structures corresponding to known state-of-the-art n-type and p-type TCs and compute a series of corresponding computational descriptor properties. Our goals are to (1) compare computational descriptors to experimentally demonstrated properties of real materials in the data set, (2) determine the ability of ground state, density functional theory (DFT)-based computational screening methodologies to identify these experimentally realized TCs, and (3) use this understanding to estimate reasonable screening cutoffs for four commonl...

[1]  Wei Chen,et al.  An ab initio electronic transport database for inorganic materials , 2017, Scientific Data.

[2]  R. J. Bouchard,et al.  Single crystal synthesis and electrical properties of CdSnO3, Cd2SnO4, In2TeO6 and Cdln2O4 , 1977 .

[3]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[4]  N. Kimizuka,et al.  The phase relations in the In2O3Fe2ZnO4ZnO system at 1350°C , 1990 .

[5]  K. Ellmer Resistivity of polycrystalline zinc oxide films: current status and physical limit , 2001 .

[6]  R. Palgrave,et al.  Engineering Valence Band Dispersion for High Mobility p-Type Semiconductors , 2017 .

[7]  Yasushi Sato,et al.  Electrical and optical properties of amorphous indium zinc oxide films , 2006 .

[8]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[9]  S. Lany Band-Structure Calculations for the 3d Transition Metal Oxides in GW , 2013 .

[10]  T. Moriga,et al.  Structural analysis of homologous series of Zn k In2O k + 3 (k=3, 5, 7) and Zn k InGaO k + 3 (k=1, 3, 5) as thermoelectric materials , 2009 .

[11]  Vladan Stevanović,et al.  Correcting Density Functional Theory for Accurate Predictions of Compound Enthalpies of Formation:Fitted elemental-phase Reference Energies (FERE) , 2012 .

[12]  I. A. Rauf,et al.  Structure and properties of tin‐doped indium oxide thin films prepared by reactive electron‐beam evaporation with a zone‐confining arrangement , 1996 .

[13]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[14]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[15]  Kristin A. Persson,et al.  Electrochemical Stability of Metastable Materials , 2017 .

[16]  Alex Zunger,et al.  Practical doping principles , 2003 .

[17]  Alán Aspuru-Guzik,et al.  Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry – the Harvard Clean Energy Project , 2014 .

[18]  K. Fleischer,et al.  Synthesis of nanocrystalline Cu deficient CuCrO2 – a high figure of merit p-type transparent semiconductor , 2016 .

[19]  H. Ohta,et al.  Degenerate p-type conductivity in wide-gap LaCuOS1−xSex (x=0–1) epitaxial films , 2003 .

[20]  H. Hosono,et al.  Transparent p-type semiconductor: LaCuOS layered oxysulfide , 2000 .

[21]  W. P. Mulligan,et al.  Properties of transparent conducting oxides formed from CdO and ZnO alloyed with SnO2 and In2O3 , 1997 .

[22]  C. Felser,et al.  Rational design of transparent p-type conducting non-oxide materials from high-throughput calculations , 2018 .

[23]  H. Kumigashira,et al.  Electronic Band Structure of Transparent Conductor: Nb-Doped Anatase TiO2 , 2008 .

[24]  Optical and electronic properties of delafossite CuBO2p-type transparent conducting oxide , 2013 .

[25]  Muratahan Aykol,et al.  Thermodynamic limit for synthesis of metastable inorganic materials , 2018, Science Advances.

[26]  Joel B. Varley,et al.  Role of self-trapping in luminescence and p -type conductivity of wide-band-gap oxides , 2012 .

[27]  Thomas Olsen,et al.  Computational screening of perovskite metal oxides for optimal solar light capture , 2012 .

[28]  Kristian Sommer Thygesen,et al.  High-Throughput Computational Assessment of Previously Synthesized Semiconductors for Photovoltaic and Photoelectrochemical Devices , 2018 .

[29]  A. Tiwari,et al.  CuBO2: A p-type transparent oxide , 2007 .

[30]  T. Kamiya,et al.  Metallic state in a lime-alumina compound with nanoporous structure. , 2007, Nano letters.

[31]  Jinzhong Zhang,et al.  Structural, electronic band transition and optoelectronic properties of delafossite CuGa1−xCrxO2 (0 ≤ x ≤ 1) solid solution films grown by the sol–gel method , 2012 .

[32]  E. Burstein Anomalous Optical Absorption Limit in InSb , 1954 .

[33]  S. Lany Semiconducting transition metal oxides , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  Kenji Ebihara,et al.  Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition , 2006 .

[35]  T. Moss The Interpretation of the Properties of Indium Antimonide , 1954 .

[36]  K. Jacobsen,et al.  Sulfide perovskites for solar energy conversion applications: computational screening and synthesis of the selected compound LaYS3 , 2017 .

[37]  G. Ceder,et al.  Efficient band gap prediction for solids. , 2010, Physical review letters.

[38]  Patrick Huck,et al.  The Materials Project: Accelerating Materials Design Through Theory-Driven Data and Tools , 2020, Handbook of Materials Modeling.

[39]  Douglas A. Keszler,et al.  P-type conductivity in transparent oxides and sulfide fluorides , 2003 .

[40]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[41]  D. Ginley,et al.  Handbook of transparent conductors , 2011 .

[42]  H. Y. Fan,et al.  Infra-red Absorption in Semiconductors , 1956 .

[43]  R. Roy,et al.  A scheme of simultaneous cationic–anionic substitution in CuCrO2 for transparent and superior p-type transport , 2016 .

[44]  Patrick Huck,et al.  User applications driven by the community contribution framework MPContribs in the Materials Project , 2015, Concurr. Comput. Pract. Exp..

[45]  H. Ohta,et al.  Highly electrically conductive indium–tin–oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition , 2000 .

[46]  Frank Fuchs,et al.  Branch-point energies and band discontinuities of III-nitrides and III-/II-oxides from quasiparticle band-structure calculations , 2009 .

[47]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[48]  X. Lin,et al.  Solution-Processed p-Type Transparent Conducting BaCu2S2 Thin Film , 2007 .

[49]  Martin Dressel,et al.  Electrodynamics of Solids: Optical Properties of Electrons in Matter , 2002 .

[50]  K. Ohkawa,et al.  High Stability and Efficiency of GaN Photocatalyst for Hydrogen Generation from Water , 2012 .

[51]  R. Grigorovici,et al.  Optical Properties and Electronic Structure of Amorphous Germanium , 1966, 1966.

[52]  Tiago F. T. Cerqueira,et al.  High-throughput search of ternary chalcogenides for p-type transparent electrodes , 2017, Scientific Reports.

[53]  Matthew Horton,et al.  Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows , 2017 .

[54]  S. Guo,et al.  Transparent and semitransparent conducting film deposition by reactive-environment, hollow cathode sputtering , 2005 .

[55]  A. Zunger Inverse design in search of materials with target functionalities , 2018 .

[56]  Christopher J. Bartel,et al.  Redox-Mediated Stabilization in Zinc Molybdenum Nitrides. , 2018, Journal of the American Chemical Society.

[57]  Gerbrand Ceder,et al.  A map of the inorganic ternary metal nitrides , 2018, Nature Materials.

[58]  Chin‐Yi Tsai,et al.  Theoretical model for intravalley and intervalley free-carrier absorption in semiconductor lasers: beyond the classical Drude model , 1998 .

[59]  C. Ballif,et al.  Transparent Electrodes for Efficient Optoelectronics , 2017 .

[60]  H. Hosono,et al.  Electronic structure and optoelectronic properties of transparent p-type conducting CuAlO2 , 2000 .

[61]  M. Toney,et al.  Chemical Bath Deposition of p-Type Transparent, Highly Conducting (CuS)x:(ZnS)1-x Nanocomposite Thin Films and Fabrication of Si Heterojunction Solar Cells. , 2016, Nano letters.

[62]  B. Partoens,et al.  Easily doped p-type, low hole effective mass, transparent oxides , 2016, Scientific Reports.

[63]  Alex Zunger,et al.  Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs , 2008 .

[64]  A. Zunger,et al.  Li‐Doped Cr2MnO4: A New p‐Type Transparent Conducting Oxide by Computational Materials Design , 2013 .

[65]  Vladan Stevanovic,et al.  A Computational Framework for Automation of Point Defect Calculations , 2016, 1611.00825.

[66]  David J. Singh,et al.  BoltzTraP. A code for calculating band-structure dependent quantities , 2006, Comput. Phys. Commun..

[67]  M. Berginski,et al.  Physical properties of highly oriented spray-deposited fluorine-doped tin dioxide films as transparent conductor , 2009 .

[68]  K. Fleischer,et al.  Quantifying the Performance of P-Type Transparent Conducting Oxides by Experimental Methods , 2017, Materials.

[69]  Yiseul Park,et al.  Electrochemical Synthesis of p-Type CuFeO2 Electrodes for Use in a Photoelectrochemical Cell. , 2012, The journal of physical chemistry letters.

[70]  Chihaya Adachi,et al.  Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes , 1995 .

[71]  Maciej Haranczyk,et al.  PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators , 2016, Comput. Phys. Commun..

[72]  Alexander A. Demkov,et al.  Structural, optical, and electrical properties of strained La-doped SrTiO3 films , 2014 .

[73]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[74]  C. Ruttanapun,et al.  Optoelectronic properties of Cu1−xPtxFeO2 (0 ≤ x ≤ 0.05) delafossite for p-type transparent conducting oxide , 2012 .

[75]  H. Ma,et al.  Scattering mechanisms of charge carriers in transparent conducting oxide films , 1996 .

[76]  Christopher M Wolverton,et al.  High‐Throughput Computational Screening of New Li‐Ion Battery Anode Materials , 2013 .

[77]  Jie Yu,et al.  Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment , 2017, Proceedings of the National Academy of Sciences.

[78]  S. Ong,et al.  The thermodynamic scale of inorganic crystalline metastability , 2016, Science Advances.

[79]  Suhuai Wei,et al.  Origin of p -type doping difficulty in ZnO: The impurity perspective , 2002 .

[80]  Martin Korth,et al.  Large-scale virtual high-throughput screening for the identification of new battery electrolyte solvents: evaluation of electronic structure theory methods. , 2014, Physical chemistry chemical physics : PCCP.

[81]  M. Dekkers,et al.  ZnIr2O4, a p-type transparent oxide semiconductor in the class of spinel zinc-d6-transition metal oxide , 2007 .

[82]  Gerbrand Ceder,et al.  Identification and design principles of low hole effective mass p-type transparent conducting oxides , 2013, Nature Communications.

[83]  Akio Suzuki,et al.  Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition , 2003 .

[84]  F. Rosei,et al.  Electrical and Optical Properties of Transparent Conducting p‐Type SrTiO3 Thin Films , 2016 .

[85]  H. Hosono,et al.  Room-temperature excitons in wide-gap layered-oxysulfide semiconductor: LaCuOS , 2001 .

[86]  K. Chattopadhyay,et al.  Effect of excess oxygen on the electrical properties of transparent p-type conducting CuAlO2+x thin films , 2005 .

[87]  Charles H. Ward Materials Genome Initiative for Global Competitiveness , 2012 .

[88]  M. Izaki,et al.  Transparent zinc oxide films prepared by electrochemical reaction , 1996 .

[89]  Janet Tate,et al.  p-type conductivity in CuCr1−xMgxO2 films and powders , 2001 .

[90]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[91]  A. Zunger,et al.  Cation Off-Stoichiometry Leads to High p-Type Conductivity and Enhanced Transparency in Co2ZnO4 and Co2NiO4 Thin Films , 2012 .

[92]  Kristin A. Persson,et al.  Prediction of solid-aqueous equilibria: Scheme to combine first-principles calculations of solids with experimental aqueous states , 2012 .

[93]  Gian-Marco Rignanese,et al.  High-Throughput Design of Non-oxide p-Type Transparent Conducting Materials: Data Mining, Search Strategy, and Identification of Boron Phosphide , 2017 .

[94]  A. Zunger,et al.  Intrinsic Transparent Conductors without Doping. , 2015, Physical review letters.

[95]  D. Look,et al.  Direct observation of conduction band plasmons and the related Burstein-Moss shift in highly doped semiconductors: A STEM-EELS study of Ga-doped ZnO , 2018, Physical Review B.

[96]  M. Grundmann,et al.  Room-temperature synthesized copper iodide thin film as degenerate p-type transparent conductor with a boosted figure of merit , 2016, Proceedings of the National Academy of Sciences.

[97]  A. Zunger,et al.  Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides. , 2007, Physical review letters.

[98]  Frank Säuberlich,et al.  Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment , 2010, Materials.

[99]  M. Jayaraj,et al.  Transparent p-type conducting CuScO2+x films , 2000 .

[100]  I. Parkin,et al.  Textured fluorine-doped tin dioxide films formed by chemical vapour deposition. , 2011, Chemistry.

[101]  T. Miyata,et al.  STABILITY OF TRANSPARENT CONDUCTING OXIDE FILMS FOR USE AT HIGH TEMPERATURES , 1999 .

[102]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[103]  Ichiro Takeuchi,et al.  Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies , 2017 .

[104]  Albert Polman,et al.  Transparent conducting silver nanowire networks. , 2012, Nano letters.

[105]  Anubhav Jain,et al.  Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability , 2012 .

[106]  Gian-Marco Rignanese,et al.  High-Mobility Bismuth-based Transparent p-Type Oxide from High-Throughput Material Screening , 2016 .

[107]  D. Birnie,et al.  Assessing Tauc Plot Slope Quantification: ZnO Thin Films as a Model System , 2018 .

[108]  F. Werner Hall measurements on low-mobility thin films , 2017 .

[109]  Hideo Hosono,et al.  P-type electrical conduction in transparent thin films of CuAlO2 , 1997, Nature.

[110]  H. Mizoguchi,et al.  NbO2F: An oxyfluoride phase with wide band gap and electrochromic properties , 2002 .

[111]  Marco Buongiorno Nardelli,et al.  AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations , 2012 .

[112]  V. Lordi,et al.  Descriptor-Based Approach for the Prediction of Cation Vacancy Formation Energies and Transition Levels. , 2017, The journal of physical chemistry letters.

[113]  A. Draeseke,et al.  p-Type transparent thin films of CuY1−xCaxO2 , 2001 .

[114]  Anubhav Jain,et al.  Computational predictions of energy materials using density functional theory , 2016 .

[115]  U. Pal,et al.  Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures , 2007 .

[116]  Gustavo E Scuseria,et al.  Efficient hybrid density functional calculations in solids: assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. , 2004, The Journal of chemical physics.

[117]  Anubhav Jain,et al.  Data mined ionic substitutions for the discovery of new compounds. , 2011, Inorganic chemistry.

[118]  F. Rosei,et al.  Electrical and Optical Properties of Transparent Conducting p-Type SrTiO 3 Thin Films , 2015 .

[119]  DETERMINATION OF RESISTIVITY TENSOR AND HALL TENSOR OF ANISOTROPIC , 2014 .