Multiplicative Gain Changes Are Induced by Excitation or Inhibition Alone

We model the effects of excitation and inhibition on the gain of cortical neurons. Previous theoretical work has concluded that excitation or inhibition alone will not cause a multiplicative gain change in the curve of firing rate versus input current. However, such gain changes in vivo are measured in the curve of firing rate versus stimulus parameter. We find that when this curve is considered, and when the nonlinear relationships between stimulus parameter and input current and between input current and firing rate in vivo are taken into account, then simple excitation or inhibition alone can induce a multiplicative gain change. In particular, the power-law relationship between voltage and firing rate that is induced by neuronal noise is critical to this result. This suggests an unexpectedly simple mechanism that may underlie the gain modulations commonly observed in cortex. More generally, it suggests that a smaller input will multiplicatively modulate the gain of a larger one when both converge on a common cortical target.

[1]  C. Koch,et al.  Multiplicative computation in a visual neuron sensitive to looming , 2002, Nature.

[2]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[3]  N. Spruston,et al.  Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites , 1998, The Journal of Neuroscience.

[4]  R. Duvoisin,et al.  The metabotropic glutamate receptors: Structure and functions , 1995, Neuropharmacology.

[5]  Alexandre Pouget,et al.  Computational approaches to sensorimotor transformations , 2000, Nature Neuroscience.

[6]  D. Hansel,et al.  How Noise Contributes to Contrast Invariance of Orientation Tuning in Cat Visual Cortex , 2002, The Journal of Neuroscience.

[7]  Gary D. Bernard,et al.  A proposed mechanism for multiplication of neural signals , 1976, Biological Cybernetics.

[8]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[9]  T. Sejnowski,et al.  Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons , 2001, Neuroscience.

[10]  Michael C. Crair,et al.  A critical period for long-term potentiation at thalamocortical synapses , 1995, Nature.

[11]  B. Connors,et al.  Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor‐mediated responses in neocortex of rat and cat. , 1988, The Journal of physiology.

[12]  C. Stevens,et al.  Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  T. Poggio,et al.  A synaptic mechanism possibly underlying directional selectivity to motion , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[14]  J. Kao,et al.  Compartmentalized and Binary Behavior of Terminal Dendrites in Hippocampal Pyramidal Neurons , 2001, Science.

[15]  Bartlett W. Mel Synaptic integration in an excitable dendritic tree. , 1993, Journal of neurophysiology.

[16]  R. Yuste,et al.  Linear Summation of Excitatory Inputs by CA1 Pyramidal Neurons , 1999, Neuron.

[17]  G. Westbrook,et al.  Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents , 1990, Nature.

[18]  C. Koch,et al.  Amplification and linearization of distal synaptic input to cortical pyramidal cells. , 1994, Journal of neurophysiology.

[19]  L F Abbott,et al.  Transfer of coded information from sensory to motor networks , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  A. Grinvald,et al.  Linking spontaneous activity of single cortical neurons and the underlying functional architecture. , 1999, Science.

[21]  Christof Koch,et al.  Shunting Inhibition Does Not Have a Divisive Effect on Firing Rates , 1997, Neural Computation.

[22]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[23]  Kevin Fox,et al.  A Model for the Action of NMDA Conductances in the Visual Cortex , 1992, Neural Computation.

[24]  Kenneth D. Miller,et al.  Physiological Gain Leads to High ISI Variability in a Simple Model of a Cortical Regular Spiking Cell , 1997, Neural Computation.

[25]  D. Ferster,et al.  Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex. , 1993, Science.

[26]  A. Destexhe,et al.  Synaptic background activity enhances the responsiveness of neocortical pyramidal neurons. , 2000, Journal of neurophysiology.

[27]  N. Daw,et al.  The effect of varying stimulus intensity on NMDA-receptor activity in cat visual cortex. , 1990, Journal of neurophysiology.

[28]  L. Benardo,et al.  Separate activation of fast and slow inhibitory postsynaptic potentials in rat neocortex in vitro. , 1994, The Journal of physiology.

[29]  R. Andersen,et al.  The influence of the angle of gaze upon the excitability of the light- sensitive neurons of the posterior parietal cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[31]  S. Celebrini,et al.  Gaze direction controls response gain in primary visual-cortex neurons , 1999, Nature.

[32]  T. Sejnowski,et al.  Spatial Transformations in the Parietal Cortex Using Basis Functions , 1997, Journal of Cognitive Neuroscience.

[33]  R. Yuste,et al.  Input Summation by Cultured Pyramidal Neurons Is Linear and Position-Independent , 1998, The Journal of Neuroscience.

[34]  Brent Doiron,et al.  Subtractive and Divisive Inhibition: Effect of Voltage-Dependent Inhibitory Conductances and Noise , 2001, Neural Computation.

[35]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[36]  Bartlett W. Mel,et al.  Arithmetic of Subthreshold Synaptic Summation in a Model CA1 Pyramidal Cell , 2003, Neuron.

[37]  J. Movshon,et al.  Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[38]  W. Spain,et al.  Linear to supralinear summation of AMPA-mediated EPSPs in neocortical pyramidal neurons. , 2000, Journal of neurophysiology.

[39]  A. Destexhe,et al.  Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. , 1999, Journal of neurophysiology.

[40]  J. Hablitz,et al.  Quisqualate induces an inward current via mGluR activation in neocortical pyramidal neurons , 2000, Brain Research.

[41]  Driss Boussaoud,et al.  Effects of gaze on apparent visual responses of frontal cortex neurons , 2004, Experimental Brain Research.

[42]  S. du Lac,et al.  Regulation of firing response gain by calcium-dependent mechanisms in vestibular nucleus neurons. , 2002, Journal of neurophysiology.

[43]  L. Abbott,et al.  A model of multiplicative neural responses in parietal cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[44]  A. Beitz,et al.  L-Quisqualic acid transport into hippocampal neurons by a cystine-sensitive carrier is required for the induction of quisqualate sensitization , 2001, Neuroscience.

[45]  Michele Migliore,et al.  On the Integration of Subthreshold Inputs from Perforant Path and Schaffer Collaterals in Hippocampal CA1 Pyramidal Neurons , 2003, Journal of Computational Neuroscience.

[46]  D. Ferster,et al.  Direction selectivity of synaptic potentials in simple cells of the cat visual cortex. , 1997, Journal of neurophysiology.

[47]  Christof Koch,et al.  Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience Series) , 1998 .

[48]  C. Gray,et al.  Cellular Mechanisms Contributing to Response Variability of Cortical Neurons In Vivo , 1999, The Journal of Neuroscience.

[49]  K. Hoffmann,et al.  Eye position effects in monkey cortex. I. Visual and pursuit-related activity in extrastriate areas MT and MST. , 1997, Journal of neurophysiology.

[50]  Richard A. Andersen,et al.  A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons , 1988, Nature.

[51]  Emilio Salinas,et al.  Gain Modulation A Major Computational Principle of the Central Nervous System , 2000, Neuron.

[52]  Bartlett W. Mel,et al.  Pyramidal Neuron as Two-Layer Neural Network , 2003, Neuron.

[53]  P. Lennie,et al.  Local signals from beyond the receptive fields of striate cortical neurons. , 2003, Journal of neurophysiology.

[54]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[55]  Carrie J. McAdams,et al.  Effects of Attention on the Reliability of Individual Neurons in Monkey Visual Cortex , 1999, Neuron.

[56]  S. Squatrito,et al.  Encoding of Smooth Pursuit Direction and Eye Position by Neurons of Area MSTd of Macaque Monkey , 1997, The Journal of Neuroscience.

[57]  Maria V. Sanchez-Vives,et al.  Membrane Mechanisms Underlying Contrast Adaptation in Cat Area 17In Vivo , 2000, The Journal of Neuroscience.

[58]  L F Abbott,et al.  Coordinate transformations in the visual system: how to generate gain fields and what to compute with them. , 2001, Progress in brain research.

[59]  Vivien A. Casagrande,et al.  Biophysics of Computation: Information Processing in Single Neurons , 1999 .

[60]  C. Galletti,et al.  Gaze-dependent visual neurons in area V3A of monkey prestriate cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  P. Schwindt,et al.  Synaptically evoked dendritic action potentials in rat neocortical pyramidal neurons. , 1998, Journal of neurophysiology.

[62]  G. Carmignoto,et al.  Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. , 1992, Science.

[63]  Nicholas J. Priebe,et al.  Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity , 1998, The Journal of Neuroscience.

[64]  S. Squatrito,et al.  Gaze field properties of eye position neurones in areas MST and 7a of the macaque monkey , 1996, Visual Neuroscience.

[65]  K. Hoffmann,et al.  Eye position effects in monkey cortex. II. Pursuit- and fixation-related activity in posterior parietal areas LIP and 7A. , 1997, Journal of neurophysiology.

[66]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[67]  A. Reyes,et al.  Influence of dendritic conductances on the input-output properties of neurons. , 2001, Annual review of neuroscience.

[68]  L. Palmer,et al.  Effects of surround motion on receptive-field gain and structure in area 17 of the cat , 2002, Visual Neuroscience.

[69]  A. Destexhe,et al.  Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo. , 1998, Journal of neurophysiology.

[70]  K. Miller,et al.  Thalamocortical NMDA conductances and intracortical inhibition can explain cortical temporal tuning , 2001, Nature Neuroscience.

[71]  S. Prescott,et al.  Gain control of firing rate by shunting inhibition: Roles of synaptic noise and dendritic saturation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[72]  S. Treue,et al.  Attentional Modulation Strength in Cortical Area MT Depends on Stimulus Contrast , 2002, Neuron.

[73]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[74]  John H. R. Maunsell,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[75]  A. Grinvald,et al.  Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses , 1996, Science.

[76]  K. Miller,et al.  Neural noise can explain expansive, power-law nonlinearities in neural response functions. , 2002, Journal of neurophysiology.

[77]  R. Silver,et al.  Shunting Inhibition Modulates Neuronal Gain during Synaptic Excitation , 2003, Neuron.

[78]  D. Ferster,et al.  The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. , 2000, Science.