Robust stabilization of sampled-data systems to structured LTI perturbations

Sampled-data systems with stable, structured, LTI (linear time-invariant) perturbations in the half-plane algebra applied to the continuous-time plant are considered. Necessary and sufficient conditions are derived for robust L/sub 2/ stability of such systems. An example is provided to illustrate the results, which shows that the small gain theorem can be an extremely conservative robustness test in this sampled-data context. >

[1]  E. Hille Functional Analysis And Semi-Groups , 1948 .

[2]  Ludwig Elsner,et al.  On the variation of the spectra of matrices , 1982 .

[3]  Shinji Hara,et al.  Robust Stabilization in Digital Control Systems , 1992 .

[4]  B. Francis,et al.  Stability Theory for Linear Time-Invariant Plants with Periodic Digital Controllers , 1988, 1988 American Control Conference.

[5]  John C. Doyle Analysis of Feedback Systems with Structured Uncertainty , 1982 .

[6]  K. Hoffman Banach Spaces of Analytic Functions , 1962 .

[7]  John Doyle,et al.  Structured uncertainty in control system design , 1985, 1985 24th IEEE Conference on Decision and Control.

[8]  W. Rudin Boundary values of continuous analytic functions , 1956 .

[9]  Pramod P. Khargonekar,et al.  Robust stability and performance analysis of sampled-data systems , 1993, IEEE Trans. Autom. Control..

[10]  C. Foias,et al.  Harmonic Analysis of Operators on Hilbert Space , 1970 .

[11]  Bassam Bamieh,et al.  A general framework for linear periodic systems with applications to H/sup infinity / sampled-data control , 1992 .

[12]  Necessary and Sufficient Conditions for Robust Stability of SISO Sampled-data Systems to LTI Perturbations , 1992, 1992 American Control Conference.

[13]  Bernard Aupetit,et al.  A Primer on Spectral Theory , 1990 .

[14]  M. Khammash Necessary and sufficient conditions for the robustness of time-varying systems with applications to sampled-data systems , 1993, IEEE Trans. Autom. Control..

[15]  G. Dullerud,et al.  L/sub 1/ analysis and design of sampled-data systems , 1992 .

[16]  Shinji Hara,et al.  Worst case analysis and design of sampled data control systems , 1990, 29th IEEE Conference on Decision and Control.

[17]  B. Francis,et al.  Input-output stability of sampled-data systems , 1991 .

[18]  B. Francis,et al.  A lifting technique for linear periodic systems with applications to sampled-data control , 1991 .

[19]  P. Halmos A Hilbert Space Problem Book , 1967 .

[20]  J. Doyle,et al.  New conic sectors for sampled-data feedback systems , 1986 .