Recent developments in deterministic sequencing and scheduling: a survey : (preprint)

The theory of deterministic sequencing and scheduling has expanded rapidly during the past years. We survey the state of the art with respect to optimization and approximation algorithms and interpret these in terms of computational complexity theory. Special cases considered are single machine scheduling, identical, uniform and unrelated parallel machine scheduling, and open shop, flow shop and job shop scheduling. This paper is a revised version of the survey by Graham et al. (Ann. Discrete Math. 5(1979) 287–326) , with emphasis on recent developments.

[1]  Edward G. Coffman,et al.  Computer and job-shop scheduling theory , 1976 .

[2]  Barbara B. Simons,et al.  A fast algorithm for single processor scheduling , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[3]  Selmer Martin Johnson,et al.  Discussion: Sequencing n Jobs on Two Machines with Arbitrary Time Lags , 1959 .

[4]  Wlodzimierz Szwarc On some sequencing problems , 1968 .

[5]  Salah E. Elmaghraby,et al.  On the Scheduling of Jobs on a Number of Identical Machines. , 1972 .

[6]  Jeffrey B. Sidney,et al.  The Two-Machine Maximum Flow Time Problem with Series Parallel Precedence Relations , 1979, Oper. Res..

[7]  James R. Jackson,et al.  An extension of Johnson's results on job IDT scheduling , 1956 .

[8]  Sant Arora,et al.  The Sequencing Problem , 1969 .

[9]  M. Fujii,et al.  Optimal Sequencing of Two Equivalent Processors , 1969 .

[10]  B. J. Lageweg,et al.  Computer-Aided complexity classification of combinational problems , 1982, CACM.

[11]  L. Gelders,et al.  Coordinating Aggregate and Detailed Scheduling Decisions in the One-Machine Job Shop: Part I. Theory , 2015, Oper. Res..

[12]  C. L. Liu,et al.  On a Class of Scheduling Algorithms for Multiprocessors Computing Systems , 1974, Sagamore Computer Conference.

[13]  Teofilo F. Gonzalez,et al.  A Note on Open Shop Preemptive Schedules , 1979, IEEE Transactions on Computers.

[14]  J. J. Brennan,et al.  An Improved Algorithm for Scheduling Jobs on Identical Machines , 1977 .

[15]  Ronald L. Graham,et al.  Bounds on Multiprocessing Timing Anomalies , 1969, SIAM Journal of Applied Mathematics.

[16]  Ravi Sethi,et al.  The Complexity of Flowshop and Jobshop Scheduling , 1976, Math. Oper. Res..

[17]  Ravi Sethi,et al.  Scheduling Graphs on Two Processors , 1976, SIAM J. Comput..

[18]  Eugene L. Lawler,et al.  Minimizing Maximum Lateness in a Two-Machine Open Shop , 1979, Math. Oper. Res..

[19]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[20]  W. A. Horn Single-Machine Job Sequencing with Treelike Precedence Ordering and Linear Delay Penalties , 1972 .

[21]  Chris N. Potts,et al.  An adaptive branching rule for the permutation flow-shop problem , 1980 .

[22]  Shui Lam,et al.  Worst Case Analysis of Two Scheduling Algorithms , 1977, SIAM J. Comput..

[23]  A. J. Clewett,et al.  Introduction to sequencing and scheduling , 1974 .

[24]  Harold N. Gabow,et al.  An Almost-Linear Algorithm for Two-Processor Scheduling , 1982, JACM.

[25]  John M. Charlton,et al.  A Generalized Machine-Scheduling Algorithm , 1970 .

[26]  Ravi Sethi,et al.  On the Complexity of Mean Flow Time Scheduling , 1977, Math. Oper. Res..

[27]  S. M. Johnson,et al.  Optimal two- and three-stage production schedules with setup times included , 1954 .

[28]  C. Monma,et al.  A concise survey of efficiently solvable special cases of the permutation flow-shop problem , 1983 .

[29]  Lucio Bianco,et al.  Scheduling of a single machine to minimize total weighted completion time subject to release dates , 1982 .

[30]  Eugene L. Lawler,et al.  Optimal Sequencing of a Single Machine Subject to Precedence Constraints , 1973 .

[31]  Hamilton Emmons,et al.  One-Machine Sequencing to Minimize Certain Functions of Job Tardiness , 1969, Oper. Res..

[32]  D. A. Wismer,et al.  Solution of the Flowshop-Scheduling Problem with No Intermediate Queues , 1972, Oper. Res..

[33]  Chris N. Potts,et al.  An algorithm for single machine sequencing with release dates to minimize total weighted completion time , 1983, Discret. Appl. Math..

[34]  Marshall L. Fisher,et al.  A dual algorithm for the one-machine scheduling problem , 1976, Math. Program..

[35]  Ellis Horowitz,et al.  Exact and Approximate Algorithms for Scheduling Nonidentical Processors , 1976, JACM.

[36]  Jan Karel Lenstra,et al.  Sequencing by enumerative methods , 1977 .

[37]  Sartaj Sahni,et al.  Complexity of Scheduling Shops with No Wait in Process , 1979, Math. Oper. Res..

[38]  S. S. Panwalkar,et al.  A Survey of Scheduling Rules , 1977, Oper. Res..

[39]  J. M. Moore An n Job, One Machine Sequencing Algorithm for Minimizing the Number of Late Jobs , 1968 .

[40]  Eugene L. Lawler,et al.  Preemptive scheduling of uniform machines subject to release dates : (preprint) , 1979 .

[41]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[42]  Linus Schrage,et al.  Finding an Optimal Sequence by Dynamic Programming: An Extension to Precedence-Related Tasks , 1978, Oper. Res..

[43]  N. Hsu Elementary proof of Hu’s theorem on isotone mappings , 1966 .

[44]  William S. Gere Heuristics in Job Shop Scheduling , 1966 .

[45]  E. Lawler Sequencing Jobs to Minimize Total Weighted Completion Time Subject to Precedence Constraints , 1978 .

[46]  B. J. Lageweg,et al.  A General Bounding Scheme for the Permutation Flow-Shop Problem , 1978, Oper. Res..

[47]  Giorgio Ausiello,et al.  Analysis and design of algorithms in combinatorial optimization , 1981 .

[48]  W. A. Horn Technical Note - Minimizing Average Flow Time with Parallel Machines , 1973, Oper. Res..

[49]  E. Ignall,et al.  Application of the Branch and Bound Technique to Some Flow-Shop Scheduling Problems , 1965 .

[50]  David S. Johnson,et al.  Two-Processor Scheduling with Start-Times and Deadlines , 1977, SIAM J. Comput..

[51]  C. N. Potts,et al.  Technical Note - Analysis of a Heuristic for One Machine Sequencing with Release Dates and Delivery Times , 1980, Oper. Res..

[52]  R. Gomory,et al.  Sequencing a One State-Variable Machine: A Solvable Case of the Traveling Salesman Problem , 1964 .

[53]  B. J. Lageweg,et al.  Computer aided complexity classification of deterministic scheduling problems , 1981 .

[54]  Jan Karel Lenstra,et al.  Complexity of machine scheduling problems , 1975 .

[55]  J. Piehler,et al.  Ein Beitrag zum Reihenfolgeproblem , 1960, Unternehmensforschung.

[56]  Edward G. Coffman,et al.  An Application of Bin-Packing to Multiprocessor Scheduling , 1978, SIAM J. Comput..

[57]  Sartaj Sahni,et al.  Preemptive Scheduling of Independent Jobs with Release and Due Times on Open, Flow and Job Shops , 1981, Oper. Res..

[58]  Charles U. Martel Scheduling Uniform Machines with Release Times, Deadlines and Due Times , 1982 .

[59]  Teofilo F. Gonzalez,et al.  Flowshop and Jobshop Schedules: Complexity and Approximation , 1978, Oper. Res..

[60]  R. A. Dudek,et al.  Flowshop Sequencing Problem with Ordered Processing Time Matrices , 1975 .

[61]  Graham McMahon,et al.  On Scheduling with Ready Times and Due Dates to Minimize Maximum Lateness , 1975, Oper. Res..

[62]  P. H. Lindsay Human Information Processing , 1977 .

[63]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .

[64]  Barbara B. Simons,et al.  A fast algorithm for multiprocessor scheduling , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[65]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[66]  D. Adolphson Optimal linear-ordering. , 1973 .

[67]  Robert McNaughton,et al.  Scheduling with Deadlines and Loss Functions , 1959 .

[68]  David S. Johnson,et al.  Scheduling Opposing Forests , 1983 .

[69]  Ludo Gelders,et al.  Coordinating Aggregate and Detailed Scheduling in the One-Machine Job Shop: II - Computation and Structure , 1975, Oper. Res..

[70]  Toshihide Ibaraki,et al.  A Solvable Case of the One-Machine Scheduling Problem with Ready and Due Times , 1978, Oper. Res..

[71]  Richard M. Karp,et al.  On the Computational Complexity of Combinatorial Problems , 1975, Networks.

[72]  B. J. Lageweg,et al.  Minimizing Total Costs in One-Machine Scheduling , 1975, Oper. Res..

[73]  I. Adiri,et al.  An Efficient Optimal Algorithm for the Two-Machines Unit-Time Jobshop Schedule-Length Problem , 1982, Math. Oper. Res..

[74]  B. J. Lageweg,et al.  Minimizing maximum lateness on one machine : Computational experience and some applications , 1976 .

[75]  David S. Johnson,et al.  Scheduling Tasks with Nonuniform Deadlines on Two Processors , 1976, J. ACM.

[76]  Jan Karel Lenstra,et al.  Scheduling subject to resource constraints: classification and complexity , 1983, Discret. Appl. Math..

[77]  Edward W. Davis,et al.  Project Scheduling under Resource Constraints—Historical Review and Categorization of Procedures , 1973 .

[78]  W. Szwarc Elimination methods in the m × n sequencing problem , 1971 .

[79]  Jan Karel Lenstra,et al.  Complexity results for scheduling chains on a single machine : (preprint) , 1980 .

[80]  B. J. Lageweg,et al.  Surrogate duality relaxation for job shop scheduling , 1983, Discret. Appl. Math..

[81]  J. Lenstra,et al.  Job-Shop Scheduling by Implicit Enumeration , 1977 .

[82]  Sartaj Sahni,et al.  Algorithms for Scheduling Independent Tasks , 1976, J. ACM.

[83]  James E. Day,et al.  Review of sequencing research , 1970 .

[84]  J. M. Moore,et al.  A Functional Equation and its Application to Resource Allocation and Sequencing Problems , 1969 .

[85]  Clyde L. Monma,et al.  Sequencing to Minimize the Maximum Job Cost , 1980, Oper. Res..

[86]  E. L. Lawler,et al.  Preemptive Scheduling of. Precedence-Constrained Jobs on Parallel Machines , 1981 .

[87]  David S. Johnson,et al.  Approximation Algorithms for Bin Packing Problems: A Survey , 1981 .

[88]  Oscar H. Ibarra,et al.  On Two—Processor Scheduling of One— or Two—Unit Time Tasks with Precedence Constraints , 1975 .

[89]  Ronald L. Graham,et al.  Performance Guarantees for Scheduling Algorithms , 1978, Oper. Res..

[90]  Jane W.-S. Liu,et al.  Bounds on Scheduling Algorithms for Heterogeneous Comnputing Systems , 1974, IFIP Congress.

[91]  Kenneth R. Baker,et al.  Sequencing with due-dates and early start times to minimize maximum tardiness , 1974 .

[92]  Donald L. Adolphson,et al.  Single Machine Job Sequencing with Precedence Constraints , 1977, SIAM J. Comput..

[93]  Shui Lam,et al.  A Level Algorithm for Preemptive Scheduling , 1977, J. ACM.

[94]  Jan Karel Lenstra,et al.  Preemptive Scheduling of a Single Machine to Minimize Maximum Cost Subject to Release Dates and Precedence Constraints , 1983, Oper. Res..

[95]  Ronald L. Graham,et al.  Bounds for certain multiprocessing anomalies , 1966 .

[96]  C. L. Liu,et al.  Deterministic Job Scheduling in Computing Systems , 1976, Performance.

[97]  Sartaj Sahni,et al.  Nearly On Line Scheduling of a Uniform Processor System with Release Times , 1979, SIAM J. Comput..

[98]  B. J. Lageweg,et al.  Surrogate duality relaxation for job shop scheduling : (preprint) , 1981 .

[99]  Jeffrey M. Jaffe,et al.  Efficient Scheduling of Tasks without Full Use of Processor Resources , 1980, Theor. Comput. Sci..

[100]  C. V. Ramamoorthy,et al.  On the Flow-Shop Sequencing Problem with No Wait in Process † , 1972 .

[101]  Sartaj Sahni,et al.  Scheduling Independent Tasks with Due Times on a Uniform Processor System , 1980, JACM.

[102]  J. K. Lenstra,et al.  Computational complexity of discrete optimization problems , 1977 .

[103]  Teofilo F. Gonzalez,et al.  Preemptive Scheduling of Uniform Processor Systems , 1978, JACM.

[104]  C. L. Liu,et al.  Optimal Scheduling on Multi-Processor Computing Systems , 1972, SWAT.

[105]  Christos H. Papadimitriou,et al.  Flowshop scheduling with limited temporary storage , 1980, JACM.

[106]  Pierre N. Robillard,et al.  Scheduling with earliest start and due date constraints on multiple machines , 1975 .

[107]  Robert E. Tarjan,et al.  Scheduling Unit-Time Tasks with Arbitrary Release Times and Deadlines , 1981, SIAM J. Comput..

[108]  Edward G. Coffman,et al.  Scheduling independent tasks to reduce mean finishing time , 1974, CACM.

[109]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[110]  Oscar H. Ibarra,et al.  Bounds for LPT Schedules on Uniform Processors , 1977, SIAM J. Comput..

[111]  Salah E. Elmaghraby,et al.  Symposium on the Theory of Scheduling and Its Applications , 1973 .

[112]  E. L. Lawler,et al.  Preemptive scheduling of uniform parallel machines to minimize the weighted number of late jobs : (preprint) , 1979 .

[113]  Oscar H. Ibarra,et al.  Approximation Algorithms for Certain Scheduling Problems , 1978, Math. Oper. Res..

[114]  Edward G. Coffman,et al.  Optimal Preemptive Scheduling on Two-Processor Systems , 1969, IEEE Transactions on Computers.

[115]  Jeffrey B. Sidney,et al.  An Extension of Moore’s Due Date Algotithm , 1973 .

[116]  Jan Karel Lenstra,et al.  Complexity of Scheduling under Precedence Constraints , 1978, Oper. Res..

[117]  Wayne E. Smith Various optimizers for single‐stage production , 1956 .

[118]  S. S. Panwalkar,et al.  Flowshop sequencing problem with ordered processing time matrices: A general case , 1976 .

[119]  David S. Johnson,et al.  Scheduling Equal-Length Tasks Under Treelike Precedence Constraints to Minimize Maximum Lateness , 1977, Math. Oper. Res..

[120]  T. C. Hu Parallel Sequencing and Assembly Line Problems , 1961 .

[121]  Oscar H. Ibarra,et al.  Heuristic Algorithms for Scheduling Independent Tasks on Nonidentical Processors , 1977, JACM.

[122]  Michael H. Rothkopf,et al.  Scheduling Independent Tasks on Parallel Processors , 1966 .

[123]  G. Thompson,et al.  Algorithms for Solving Production-Scheduling Problems , 1960 .

[124]  Teofilo F. Gonzalez,et al.  A New Algorithm for Preemptive Scheduling of Trees , 1980, JACM.

[125]  W. A. Horn Some simple scheduling algorithms , 1974 .

[126]  Teofilo F. Gonzalez,et al.  Open Shop Scheduling to Minimize Finish Time , 1976, JACM.

[127]  Jeffrey B. Sidney,et al.  Decomposition Algorithms for Single-Machine Sequencing with Precedence Relations and Deferral Costs , 1975, Oper. Res..

[128]  Eugene L. Lawler,et al.  On Preemptive Scheduling of Unrelated Parallel Processors by Linear Programming , 1978, JACM.

[129]  Clyde L. Monma,et al.  Sequencing with Series-Parallel Precedence Constraints , 1979, Math. Oper. Res..

[130]  Wlodzimierz Szwarc Technical Note - Dominance Conditions for the Three-Machine Flow-Shop Problem , 1978, Oper. Res..

[131]  Jatinder N. D. Gupta,et al.  Technical Note - Improved Dominance Conditions for the Three-Machine Flowshop Scheduling Problem , 1978, Oper. Res..

[132]  L. G. Mitten Sequencing n Jobs on Two Machines with Arbitrary Time Lags , 1959 .

[133]  A. Kan Machine Scheduling Problems: Classification, Complexity and Computations , 1976 .

[134]  William L. Maxwell,et al.  Theory of scheduling , 1967 .

[135]  Edward G. Coffman,et al.  Preemptive Scheduling of Real-Time Tasks on Multiprocessor Systems , 1970, JACM.

[136]  E. Lawler A “Pseudopolynomial” Algorithm for Sequencing Jobs to Minimize Total Tardiness , 1977 .

[137]  Jeffrey M. Jaffe An Analysis of Preemptive Multiprocessor Job Scheduling , 1980, Math. Oper. Res..

[138]  Shimon Even,et al.  Bounds for the Optimal Scheduling of n Jobs on m Processors , 1964 .

[139]  Jeffrey D. Ullman,et al.  NP-Complete Scheduling Problems , 1975, J. Comput. Syst. Sci..

[140]  Wlodzimierz Szwarc Optimal Elimination Methods in the m × n Flow-Shop Scheduling Problem , 1973, Oper. Res..