8 LOW-DISTORTION EMBEDDINGS OF FINITE METRIC SPACES

An n-point metric space (X,D) can be represented by an n × n table specifying the distances. Such tables arise in many diverse areas. For example, consider the following scenario in microbiology: X is a collection of bacterial strains, and for every two strains, one is given their dissimilarity (computed, say, by comparing their DNA). It is difficult to see any structure in a large table of numbers, and so we would like to represent a given metric space in a more comprehensible way. For example, it would be very nice if we could assign to each x ∈ X a point f(x) in the plane in such a way that D(x, y) equals the Euclidean distance of f(x) and f(y). Such a representation would allow us to see the structure of the metric space: tight clusters, isolated points, and so on. Another advantage would be that the metric would now be represented by only 2n real numbers, the coordinates of the n points in the plane, instead of ( n 2 )

[1]  Kenneth Ward Church,et al.  Nonlinear Estimators and Tail Bounds for Dimension Reduction in l1 Using Cauchy Random Projections , 2006, J. Mach. Learn. Res..

[2]  Shang-Hua Teng,et al.  Lower-stretch spanning trees , 2004, STOC '05.

[3]  James R. Lee,et al.  Euclidean distortion and the sparsest cut , 2005, STOC '05.

[4]  Béla Bollobás,et al.  Extremal problems in graph theory , 1977, J. Graph Theory.

[5]  Alexandr Andoni,et al.  Near Linear Lower Bound for Dimension Reduction in L1 , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[6]  Piotr Indyk,et al.  Euclidean spanners in high dimensions , 2013, SODA.

[7]  Mikkel Thorup,et al.  Approximate distance oracles , 2001, JACM.

[8]  J. Bourgain The metrical interpretation of superreflexivity in banach spaces , 1986 .

[9]  James R. Lee,et al.  Pathwidth, trees, and random embeddings , 2013, Comb..

[10]  Kasper Green Larsen,et al.  The Johnson-Lindenstrauss lemma is optimal for linear dimensionality reduction , 2014, ICALP.

[11]  Jean Bourgain,et al.  On hilbertian subsets of finite metric spaces , 1986 .

[12]  Anupam Gupta,et al.  Embeddings of negative-type metrics and an improved approximation to generalized sparsest cut , 2005, SODA '05.

[13]  David P. Dobkin,et al.  On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..

[14]  Rafail Ostrovsky,et al.  Low distortion embeddings for edit distance , 2007, JACM.

[15]  Nir Ailon,et al.  An almost optimal unrestricted fast Johnson-Lindenstrauss transform , 2010, SODA '11.

[16]  J. Matousek,et al.  Open problems on embeddings of finite metric spaces , 2014 .

[17]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[18]  Daniel M. Kane,et al.  Sparser Johnson-Lindenstrauss Transforms , 2010, JACM.

[19]  Rachel Ward,et al.  New and Improved Johnson-Lindenstrauss Embeddings via the Restricted Isometry Property , 2010, SIAM J. Math. Anal..

[20]  Satish Rao,et al.  A tight bound on approximating arbitrary metrics by tree metrics , 2003, STOC '03.

[21]  Anirban Dasgupta,et al.  A sparse Johnson: Lindenstrauss transform , 2010, STOC '10.

[22]  James R. Lee,et al.  Near-optimal distortion bounds for embedding doubling spaces into L1 , 2011, STOC '11.

[23]  James R. Lee,et al.  Dimension reduction for finite trees in l1 , 2011, SODA.

[24]  Gideon Schechtman,et al.  Planar Earthmover is not in L_1 , 2005, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[25]  Jirí Matousek,et al.  Inapproximability for Metric Embeddings into R^d , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[26]  Michiel H. M. Smid,et al.  Euclidean spanners: short, thin, and lanky , 1995, STOC '95.

[27]  Ryan O'Donnell,et al.  Derandomized dimensionality reduction with applications , 2002, SODA '02.

[28]  Piotr Indyk,et al.  Approximate nearest neighbors: towards removing the curse of dimensionality , 1998, STOC '98.

[29]  Yair Bartal,et al.  Probabilistic approximation of metric spaces and its algorithmic applications , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[30]  Santosh S. Vempala,et al.  On Euclidean Embeddings and Bandwidth Minimization , 2001, RANDOM-APPROX.

[31]  Robert Krauthgamer,et al.  Measured Descent: A New Embedding Method for Finite Metrics , 2004, FOCS.

[32]  Piotr Indyk,et al.  Embedding ultrametrics into low-dimensional spaces , 2006, SCG '06.

[33]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[34]  Béla Bollobás,et al.  Ramsey-type theorems for metric spaces with applications to online problems , 2004, J. Comput. Syst. Sci..

[35]  Erik D. Demaine,et al.  Plane Embeddings of Planar Graph Metrics , 2006, SCG '06.

[36]  James R. Lee,et al.  Embeddings of Topological Graphs: Lossy Invariants, Linearization, and 2-Sums , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[37]  I. J. Schoenberg,et al.  Metric spaces and positive definite functions , 1938 .

[38]  S. Muthukrishnan,et al.  Approximate nearest neighbors and sequence comparison with block operations , 2000, STOC '00.

[39]  J. M. Sek On embedding trees into uniformly convex Banach spaces , 1999 .

[40]  Anastasios Sidiropoulos,et al.  Optimal Stochastic Planarization , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[41]  Venkatesan Guruswami,et al.  Embeddings and non-approximability of geometric problems , 2003, SODA '03.

[42]  Robert Krauthgamer,et al.  Bounded geometries, fractals, and low-distortion embeddings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[43]  J. Bourgain On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .

[44]  Kilian Q. Weinberger,et al.  Feature hashing for large scale multitask learning , 2009, ICML '09.

[45]  Ittai Abraham,et al.  Nearly Tight Low Stretch Spanning Trees , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[46]  Noga Alon,et al.  A Graph-Theoretic Game and Its Application to the k-Server Problem , 1995, SIAM J. Comput..

[47]  Andréa W. Richa,et al.  A Tight Lower Bound for the Steiner Point Removal Problem on Trees , 2006, APPROX-RANDOM.

[48]  Nathan Linial,et al.  On metric Ramsey-type phenomena , 2004 .

[49]  Luca Trevisan,et al.  When Hamming meets Euclid: the approximability of geometric TSP and MST (extended abstract) , 1997, STOC '97.

[50]  J. R. Lee,et al.  Embedding the diamond graph in Lp and dimension reduction in L1 , 2004, math/0407520.

[51]  Assaf Naor,et al.  Vertical perimeter versus horizontal perimeter , 2017, Annals of Mathematics.

[52]  Bernard Chazelle,et al.  Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform , 2006, STOC '06.

[53]  Sanjeev Arora,et al.  Expander flows, geometric embeddings and graph partitioning , 2009, JACM.

[54]  J. Matousek,et al.  Bi-Lipschitz embeddings into low-dimensional Euclidean spaces , 1990 .

[55]  James R. Lee,et al.  On the 2-sum embedding conjecture , 2013, SoCG '13.

[56]  Nathan Linial,et al.  The geometry of graphs and some of its algorithmic applications , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[57]  Anupam Gupta Embedding Tree Metrics into Low-Dimensional Euclidean Spaces , 2000, Discret. Comput. Geom..

[58]  Satish Rao,et al.  Small distortion and volume preserving embeddings for planar and Euclidean metrics , 1999, SCG '99.

[59]  A. Naor,et al.  Nonembeddability theorems via Fourier analysis , 2006 .

[60]  James R. Lee,et al.  On the geometry of graphs with a forbidden minor , 2009, STOC '09.

[61]  Hans-Jürgen Bandelt,et al.  Embedding metric spaces in the rectilinear plane: A six-point criterion , 1996, Discret. Comput. Geom..

[62]  Yuval Rabani,et al.  Improved lower bounds for embeddings into L1 , 2006, SODA '06.

[63]  A. Dress,et al.  A canonical decomposition theory for metrics on a finite set , 1992 .

[64]  Dimitris Achlioptas,et al.  Database-friendly random projections , 2001, PODS.

[65]  Sudipto Guha,et al.  Approximating a finite metric by a small number of tree metrics , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[66]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[67]  Assaf Naor,et al.  Ramsey partitions and proximity data structures , 2006, FOCS.

[68]  Anastasios Sidiropoulos,et al.  Constant-Distortion Embeddings of Hausdorff Metrics into Constant-Dimensional l_p Spaces , 2016, APPROX-RANDOM.

[69]  Jirí Matousek,et al.  Low-Distortion Embeddings of Trees , 2001, J. Graph Algorithms Appl..

[70]  Graham Cormode,et al.  Permutation Editing and Matching via Embeddings , 2001, ICALP.

[71]  Robert Krauthgamer,et al.  Vertex Sparsifiers: New Results from Old Techniques , 2010, SIAM J. Comput..

[72]  Assaf Naor,et al.  A $(\log n)^{\Omega(1)}$ Integrality Gap for the Sparsest Cut SDP , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[73]  Avner Magen,et al.  Near Optimal Dimensionality Reductions That Preserve Volumes , 2008, APPROX-RANDOM.

[74]  Sergey V. Shpectorov,et al.  On Scale Embeddings of Graphs into Hypercubes , 1993, Eur. J. Comb..

[75]  INAPPROXIMABILITY FOR METRIC EMBEDDINGS INTO R , 2010 .

[76]  Uriel Feige,et al.  Approximating the Bandwidth via Volume Respecting Embeddings , 2000, J. Comput. Syst. Sci..

[77]  Yuri Rabinovich,et al.  A Lower Bound on the Distortion of Embedding Planar Metrics into Euclidean Space , 2002 .

[78]  Graham Cormode,et al.  The string edit distance matching problem with moves , 2007, TALG.

[79]  Ran Raz,et al.  Lower Bounds on the Distortion of Embedding Finite Metric Spaces in Graphs , 1998, Discret. Comput. Geom..

[80]  J. Matousek,et al.  On the distortion required for embedding finite metric spaces into normed spaces , 1996 .

[81]  Piotr Indyk,et al.  Approximate nearest neighbor algorithms for Hausdorff metrics via embeddings , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[82]  Moses Charikar,et al.  Similarity estimation techniques from rounding algorithms , 2002, STOC '02.

[83]  Robert Krauthgamer,et al.  Cutting corners cheaply, or how to remove Steiner points , 2014, SODA.

[84]  D. Sivakumar Algorithmic derandomization via complexity theory , 2002, STOC '02.