PartImageNet: A Large, High-Quality Dataset of Parts

[1]  Chunhua Shen,et al.  DeepEMD: Differentiable Earth Mover's Distance for Few-Shot Learning , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Ruiheng Zhang,et al.  Graph-based few-shot learning with transformed feature propagation and optimal class allocation , 2021, Neurocomputing.

[3]  Tongliang Liu,et al.  Bridging the Gap Between Few-Shot and Many-Shot Learning via Distribution Calibration , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Alan Yuille,et al.  TransFG: A Transformer Architecture for Fine-grained Recognition , 2021, AAAI.

[5]  Tianzhu Zhang,et al.  Task-aware Part Mining Network for Few-Shot Learning , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[6]  Gijs Dubbelman,et al.  Part-aware Panoptic Segmentation , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Anima Anandkumar,et al.  SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers , 2021, NeurIPS.

[8]  Sinisa Todorovic,et al.  FAPIS: A Few-shot Anchor-free Part-based Instance Segmenter , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Min Xu,et al.  Free Lunch for Few-shot Learning: Distribution Calibration , 2021, ICLR.

[10]  Trevor Darrell,et al.  Meta-Baseline: Exploring Simple Meta-Learning for Few-Shot Learning , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[11]  Zhuowen Tu,et al.  Attentional Constellation Nets for Few-Shot Learning , 2021, ICLR.

[12]  A. Yuille,et al.  COMPAS: Representation Learning with Compositional Part Sharing for Few-Shot Classification , 2021, ArXiv.

[13]  Weichao Qiu,et al.  CGPart: A Part Segmentation Dataset Based on 3D Computer Graphics Models , 2021, ArXiv.

[14]  B. Ommer,et al.  Unsupervised Part Discovery by Unsupervised Disentanglement , 2020, GCPR.

[15]  Xuming He,et al.  Part-aware Prototype Network for Few-shot Semantic Segmentation , 2020, ECCV.

[16]  Yue Wang,et al.  Rethinking Few-Shot Image Classification: a Good Embedding Is All You Need? , 2020, ECCV.

[17]  Guosheng Lin,et al.  DeepEMD: Few-Shot Image Classification With Differentiable Earth Mover’s Distance and Structured Classifiers , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Jian Sun,et al.  Objects365: A Large-Scale, High-Quality Dataset for Object Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[19]  Pavlo Molchanov,et al.  SCOPS: Self-Supervised Co-Part Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Björn Ommer,et al.  Unsupervised Part-Based Disentangling of Object Shape and Appearance , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Kaiming He,et al.  Panoptic Feature Pyramid Networks , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Leonidas J. Guibas,et al.  PartNet: A Large-Scale Benchmark for Fine-Grained and Hierarchical Part-Level 3D Object Understanding , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Ruigang Yang,et al.  ApolloCar3D: A Large 3D Car Instance Understanding Benchmark for Autonomous Driving , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Liang Lin,et al.  Look into Person: Joint Body Parsing & Pose Estimation Network and a New Benchmark , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Ming Yang,et al.  Instance-level Human Parsing via Part Grouping Network , 2018, ECCV.

[26]  Sabine Süsstrunk,et al.  Deep Feature Factorization For Concept Discovery , 2018, ECCV.

[27]  Ankush Gupta,et al.  Conditional Image Generation for Learning the Structure of Visual Objects , 2018, ArXiv.

[28]  N. Dinesh Reddy,et al.  CarFusion: Combining Point Tracking and Part Detection for Dynamic 3D Reconstruction of Vehicles , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[29]  Yuting Zhang,et al.  Unsupervised Discovery of Object Landmarks as Structural Representations , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[30]  Yu Cheng,et al.  Understanding Humans in Crowded Scenes: Deep Nested Adversarial Learning and A New Benchmark for Multi-Human Parsing , 2018, ACM Multimedia.

[31]  Joshua B. Tenenbaum,et al.  Meta-Learning for Semi-Supervised Few-Shot Classification , 2018, ICLR.

[32]  George Papandreou,et al.  Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation , 2018, ECCV.

[33]  Qi Tian,et al.  Beyond Part Models: Person Retrieval with Refined Part Pooling , 2017, ECCV.

[34]  Bolei Zhou,et al.  Scene Parsing through ADE20K Dataset , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Peng Wang,et al.  Joint Multi-person Pose Estimation and Semantic Part Segmentation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  George Papandreou,et al.  Rethinking Atrous Convolution for Semantic Image Segmentation , 2017, ArXiv.

[37]  Andrea Vedaldi,et al.  Unsupervised Learning of Object Landmarks by Factorized Spatial Embeddings , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[38]  Richard S. Zemel,et al.  Prototypical Networks for Few-shot Learning , 2017, NIPS.

[39]  Sergey Levine,et al.  Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks , 2017, ICML.

[40]  Leonidas J. Guibas,et al.  A scalable active framework for region annotation in 3D shape collections , 2016, ACM Trans. Graph..

[41]  Oriol Vinyals,et al.  Matching Networks for One Shot Learning , 2016, NIPS.

[42]  Wolfram Burgard,et al.  Deep learning for human part discovery in images , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[43]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[44]  Joshua B. Tenenbaum,et al.  Human-level concept learning through probabilistic program induction , 2015, Science.

[45]  Leonidas J. Guibas,et al.  ShapeNet: An Information-Rich 3D Model Repository , 2015, ArXiv.

[46]  Alan Yuille,et al.  Unsupervised learning of object semantic parts from internal states of CNNs by population encoding , 2015, 1511.06855.

[47]  Alan L. Yuille,et al.  Joint Object and Part Segmentation Using Deep Learned Potentials , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[48]  Alan L. Yuille,et al.  Articulated Pose Estimation by a Graphical Model with Image Dependent Pairwise Relations , 2014, NIPS.

[49]  Sanja Fidler,et al.  Detect What You Can: Detecting and Representing Objects Using Holistic Models and Body Parts , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[50]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[51]  Silvio Savarese,et al.  Beyond PASCAL: A benchmark for 3D object detection in the wild , 2014, IEEE Winter Conference on Applications of Computer Vision.

[52]  David A. McAllester,et al.  Object Detection with Grammar Models , 2011, NIPS.

[53]  Pietro Perona,et al.  The Caltech-UCSD Birds-200-2011 Dataset , 2011 .

[54]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[55]  Pietro Perona,et al.  One-shot learning of object categories , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  Daniel P. Huttenlocher,et al.  Pictorial Structures for Object Recognition , 2004, International Journal of Computer Vision.

[57]  Pietro Perona,et al.  Unsupervised Learning of Models for Recognition , 2000, ECCV.

[58]  Alan L. Yuille,et al.  Feature extraction from faces using deformable templates , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[59]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[60]  Martin A. Fischler,et al.  The Representation and Matching of Pictorial Structures , 1973, IEEE Transactions on Computers.