Representation of statistical properties

[1]  J. Lund,et al.  Compulsory averaging of crowded orientation signals in human vision , 2001, Nature Neuroscience.

[2]  D. Ariely Seeing Sets: Representation by Statistical Properties , 2001, Psychological science.

[3]  William Bialek,et al.  Adaptive Rescaling Maximizes Information Transmission , 2000, Neuron.

[4]  Stefan Treue,et al.  Seeing multiple directions of motion—physiology and psychophysics , 2000, Nature Neuroscience.

[5]  P. Lennie,et al.  Rapid adaptation in visual cortex to the structure of images. , 1999, Science.

[6]  R. Watt,et al.  The computation of orientation statistics from visual texture , 1997, Vision Research.

[7]  Steven C. Dakin,et al.  The detection of structure in glass patterns: Psychophysics and computational models , 1997, Vision Research.

[8]  Michael J. Berry,et al.  Adaptation of retinal processing to image contrast and spatial scale , 1997, Nature.

[9]  P. Cavanagh,et al.  Attentional resolution and the locus of visual awareness , 1996, Nature.

[10]  Ronald A. Rensink,et al.  TO SEE OR NOT TO SEE: The Need for Attention to Perceive Changes in Scenes , 1997 .

[11]  Andrew P. Duchon,et al.  The human visual system averages speed information , 1992, Vision Research.

[12]  O. Braddick,et al.  The temporal integration and resolution of velocity signals , 1991, Vision Research.

[13]  A. Treisman Search, similarity, and integration of features between and within dimensions. , 1991, Journal of experimental psychology. Human perception and performance.

[14]  David E. Irwin Information integration across saccadic eye movements , 1991, Cognitive Psychology.

[15]  D. W. Heeley,et al.  Recognition of stimulus orientation , 1990, Vision Research.

[16]  J. E. Albano,et al.  The role of directionally selective neurons in the perception of global motion , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  B. S. Rubenstein,et al.  Spatial variability as a limiting factor in texture-discrimination tasks: implications for performance asymmetries. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[18]  H C Nothdurft,et al.  Texton segregation by associated differences in global and local luminance distribution , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[19]  Scott N. J. Watamaniuk,et al.  Direction Perception in Complex Dynamic Displays: the Integration of Dir~~tion Information , 1988 .

[20]  Susan L. Franzel,et al.  Guided search: an alternative to the feature integration model for visual search. , 1989, Journal of experimental psychology. Human perception and performance.

[21]  G. Orban,et al.  Human velocity and direction discrimination measured with random dot patterns , 1988, Vision Research.

[22]  Robert Sekuler,et al.  Coherent global motion percepts from stochastic local motions , 1984, Vision Research.

[23]  B. Julesz Textons, the elements of texture perception, and their interactions , 1981, Nature.

[24]  H. Hock,et al.  The abstraction of schematic representations from photographs of real-world scenes , 1980, Memory & cognition.

[25]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[26]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[27]  A. O. Dick,et al.  Effect of eye movements on backward masking and perceived location , 1973 .

[28]  M. Teghtsoonian THE JUDGMENT OF SIZE. , 1965, The American journal of psychology.

[29]  S. S. Stevens On the psychophysical law. , 1957, Psychological review.

[30]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[31]  A Treisman,et al.  Feature analysis in early vision: evidence from search asymmetries. , 1988, Psychological review.

[32]  M. Lévesque Perception , 1986, The Yale Journal of Biology and Medicine.

[33]  Temporal Integration. , 1958, Canadian Medical Association journal.