Planning with preferences using maximum satisfiability

The objective of automated planning is to synthesise a plan that achieves a set of goals specified by the user. When achieving every goal is not feasible, the planning system must decide which ones to plan for and find the lowest cost plan. The system should take as input a description of the user's preferences and the costs incurred through executing actions. Goal utility dependencies arise when the utility of achieving a goal depends on the other goals that are achieved with it. This complicates the planning procedure because achieving a new goal can alter the utilities of all the other goals currently achieved. In this dissertation we present methods for solving planning problems with goal utility dependencies by compiling them to a variant of satisfiability known as weighted partial maximum satisfiability (WPMax-SAT). An optimal solution to the encoding is found using a general-purpose solver. The encoding is constructed such that its optimal solution can be used to construct a plan that is most preferred amongst other plans of length that fit within a prespecified horizon. We evaluate this approach against an integer programming based system using benchmark problems taken from past international planning competitions. We study how a WPMax-SAT solver might benefit from incorporating a procedure known as survey propagation. This is a message passing algorithm that estimates the probability that a variable is constrained to be a particular value in a randomly selected satisfying assignment. These estimates are used to influence variable/value decisions during search for a solution. Survey propagation is usually presented with respect to the satisfiability problem, and its generalisation, SP(y), with respect to the maximum satisfiability problem. We extend the argument that underpins these two algorithms to derive a new set of message passing equations for application to WPMax-SAT problems. We evaluate the success of this method by applying it to our encodings of planning problems with goal utility dependencies. Our results indicate that planning with preferences using WPMax-SAT is competitive and sometimes more successful than an integer programming approach – solving two to three times more subproblems in some domains, while being outperformed by a smaller margin in others. In some domains, we also find that using information provided by survey propagation in a WPMax-SAT solver to select variable/value pairs for the earliest decisions can, on average, direct search to lower cost solutions than a uniform sampling strategy combined with a popular heuristic. Acknowledgments …

[1]  W. Freeman,et al.  Generalized Belief Propagation , 2000, NIPS.

[2]  Bart Selman,et al.  Survey Propagation Revisited , 2007, UAI.

[3]  Abdul Sattar,et al.  A Compact and Efficient SAT Encoding for Planning , 2008, ICAPS.

[4]  Hector Geffner,et al.  Soft Goals Can Be Compiled Away , 2009, J. Artif. Intell. Res..

[5]  David L. Martin,et al.  Semantic Web Services , 2012, Springer Berlin Heidelberg.

[6]  Dana S. Nau,et al.  On the Use of Integer Programming Models in AI Planning , 1999, IJCAI.

[7]  M. Mézard,et al.  Random K-satisfiability problem: from an analytic solution to an efficient algorithm. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Fabio Gagliardi Cozman,et al.  Generating Random Bayesian Networks with Constraints on Induced Width , 2004, ECAI.

[9]  Avrim Blum,et al.  Fast Planning Through Planning Graph Analysis , 1995, IJCAI.

[10]  Enrico Giunchiglia,et al.  Planning as Satisfiability with Preferences , 2007, AAAI.

[11]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[12]  Blai Bonet,et al.  Planning as heuristic search , 2001, Artif. Intell..

[13]  Yannis Dimopoulos,et al.  Constraint Propagation in Propositional Planning , 2010, ICAPS.

[14]  Javier Larrosa,et al.  New Inference Rules for Efficient Max-SAT Solving , 2006, AAAI.

[15]  Jussi Rintanen Phase Transitions in Classical Planning: An Experimental Study , 2004, ICAPS.

[16]  Subbarao Kambhampati,et al.  Planning with Goal Utility Dependencies , 2007, IJCAI.

[17]  S. Kak Information, physics, and computation , 1996 .

[18]  Bart Selman,et al.  Heavy-Tailed Distributions in Combinatorial Search , 1997, CP.

[19]  Roberto J. Bayardo,et al.  Using CSP Look-Back Techniques to Solve Real-World SAT Instances , 1997, AAAI/IAAI.

[20]  Ilkka Niemelä,et al.  Planning as satisfiability: parallel plans and algorithms for plan search , 2006, Artif. Intell..

[21]  Dana S. Nau,et al.  Success in Spades: Using AI Planning Techniques to Win the World Championship of Computer Bridge , 1998, AAAI/IAAI.

[22]  Federico Ricci-Tersenghi,et al.  On the solution-space geometry of random constraint satisfaction problems , 2006, STOC '06.

[23]  Armin Biere,et al.  A survey of recent advances in SAT-based formal verification , 2005, International Journal on Software Tools for Technology Transfer.

[24]  Silvia Richter The LAMA Planner Using Landmark Counting in Heuristic Search , 2009 .

[25]  Subbarao Kambhampati,et al.  Anytime heuristic search for partial satisfaction planning , 2009, Artif. Intell..

[26]  G. S. Tseitin On the Complexity of Derivation in Propositional Calculus , 1983 .

[27]  Craig A. Knoblock,et al.  PDDL-the planning domain definition language , 1998 .

[28]  Ted K. Ralphs,et al.  The Symphony Callable Library for Mixed Integer Programming , 2005 .

[29]  Michael D. Ernst,et al.  Automatic SAT-Compilation of Planning Problems , 1997, IJCAI.

[30]  Laura Sebastia,et al.  On the extraction, ordering, and usage of landmarks in planning , 2001 .

[31]  Matthias Klusch,et al.  Semantic Web Service Composition Planning with OWLS-Xplan , 2005, AAAI Fall Symposium: Agents and the Semantic Web.

[32]  Bernhard Nebel,et al.  COMPLEXITY RESULTS FOR SAS+ PLANNING , 1995, Comput. Intell..

[33]  Judea Pearl,et al.  Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach , 1982, AAAI.

[34]  Sheila A. McIlraith,et al.  Characterizing Propagation Methods for Boolean Satisfiability , 2006, SAT.

[35]  Subbarao Kambhampati,et al.  Planning as constraint satisfaction: Solving the planning graph by compiling it into CSP , 2001, Artif. Intell..

[36]  Martin J. Wainwright,et al.  A new look at survey propagation and its generalizations , 2004, SODA '05.

[37]  William T. Freeman,et al.  Understanding belief propagation and its generalizations , 2003 .

[38]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[39]  Steve Chien,et al.  Automated Targeting for the MER Rovers , 2009, 2009 Third IEEE International Conference on Space Mission Challenges for Information Technology.

[40]  Stefan Edelkamp,et al.  Optimal Symbolic Planning with Action Costs and Preferences , 2009, IJCAI.

[41]  David E. Smith Choosing Objectives in Over-Subscription Planning , 2004, ICAPS.

[42]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[43]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[44]  Subbarao Kambhampati,et al.  Planning graph as the basis for deriving heuristics for plan synthesis by state space and CSP search , 2002, Artif. Intell..

[45]  Sheila A. McIlraith,et al.  VARSAT: Integrating Novel Probabilistic Inference Techniques with DPLL Search , 2009, SAT.

[46]  Erez Karpas,et al.  Sensible Agent Technology Improving Coordination and Communication in Biosurveillance Domains , 2009, IJCAI.

[47]  Devika Subramanian,et al.  Random 3-SAT: The Plot Thickens , 2000, CP.

[48]  Joao Marques-Silva,et al.  The Impact of Branching Heuristics in Propositional Satisfiability Algorithms , 1999, EPIA.

[49]  Malte Helmert,et al.  The Fast Downward Planning System , 2006, J. Artif. Intell. Res..

[50]  Fahiem Bacchus,et al.  Graphical models for preference and utility , 1995, UAI.

[51]  N. Schenker,et al.  On Judging the Significance of Differences by Examining the Overlap Between Confidence Intervals , 2001 .

[52]  Bart Selman,et al.  Formal Models of Heavy-Tailed Behavior in Combinatorial Search , 2001, CP.

[53]  Subbarao Kambhampati,et al.  Effective Approaches for Partial Satisfaction (Over-Subscription) Planning , 2004, AAAI.

[54]  Bernhard Nebel,et al.  The FF Planning System: Fast Plan Generation Through Heuristic Search , 2011, J. Artif. Intell. Res..

[55]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[56]  Jinchang Wang,et al.  Solving propositional satisfiability problems , 1990, Annals of Mathematics and Artificial Intelligence.

[57]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[58]  Subbarao Kambhampati,et al.  Loosely Coupled Formulations for Automated Planning: An Integer Programming Perspective , 2011, J. Artif. Intell. Res..

[59]  Malte Helmert,et al.  Landmarks Revisited , 2008, AAAI.

[60]  Ronen I. Brafman,et al.  UCP-Networks: A Directed Graphical Representation of Conditional Utilities , 2001, UAI.

[61]  Murray R. Spiegel,et al.  Schaum's outline of theory and problems of statistics. , 1961 .

[62]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[63]  Michael I. Jordan,et al.  Loopy Belief Propagation for Approximate Inference: An Empirical Study , 1999, UAI.

[64]  Richard Anthony Russell,et al.  Handling Goal Utility Dependencies in a Satisfiability Framework , 2010, ICAPS.

[65]  Tom Bylander,et al.  The Computational Complexity of Propositional STRIPS Planning , 1994, Artif. Intell..

[66]  F. B. Vernadat,et al.  Decisions with Multiple Objectives: Preferences and Value Tradeoffs , 1994 .

[67]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[68]  Ronen I. Brafman,et al.  Planning with Goal Preferences and Constraints , 2005, ICAPS.

[69]  Lefteris M. Kirousis,et al.  The probabilistic analysis of a greedy satisfiability algorithm , 2002, Random Struct. Algorithms.

[70]  Riccardo Zecchina,et al.  Survey propagation as local equilibrium equations , 2003, ArXiv.

[71]  Bart Selman,et al.  Pushing the Envelope: Planning, Propositional Logic and Stochastic Search , 1996, AAAI/IAAI, Vol. 2.

[72]  Maria Fox,et al.  PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains , 2003, J. Artif. Intell. Res..

[73]  S. Kambhampati,et al.  Sapa: A Domain-Independent Heuristic Metric Temporal Planner , 2014 .

[74]  Abdul Sattar,et al.  Cost-Optimal Planning using Weighted MaxSAT , 2010 .

[75]  Alfonso Gerevini,et al.  Preferences and soft constraints in PDDL3 , 2006 .

[76]  Ronen I. Brafman,et al.  Reasoning With Conditional Ceteris Paribus Preference Statements , 1999, UAI.

[77]  Hai Leong Chieu,et al.  Relaxed Survey Propagation for The Weighted Maximum Satisfiability Problem , 2009, J. Artif. Intell. Res..

[78]  Marco Pistore,et al.  Automated Composition of Semantic Web Services into Executable Processes , 2004, SEMWEB.

[79]  David Zuckerman,et al.  Optimal Speedup of Las Vegas Algorithms , 1993, Inf. Process. Lett..

[80]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[81]  Yee Whye Teh,et al.  Belief Optimization for Binary Networks: A Stable Alternative to Loopy Belief Propagation , 2001, UAI.

[82]  Riccardo Zecchina,et al.  Survey propagation: An algorithm for satisfiability , 2002, Random Struct. Algorithms.

[83]  Richard Fikes,et al.  STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.

[84]  Jussi Rintanen,et al.  Heuristics for Planning with SAT , 2010, CP.

[85]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[86]  Pierre Ganty,et al.  SAT-Based Model-Checking of Security Protocols Using Planning Graph Analysis , 2003, FME.

[87]  Malte Helmert,et al.  Exhibiting Knowledge in Planning Problems to Minimize State Encoding Length , 1999, ECP.

[88]  S. Kambhampati,et al.  Optiplan: Unifying IP-based and Graph-based Planning , 2005, J. Artif. Intell. Res..

[89]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[90]  Jussi Rintanen Planning Graphs and Propositional Clause-Learning , 2008, KR.

[91]  Riccardo Zecchina,et al.  Minimizing energy below the glass thresholds. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[92]  Bart Selman,et al.  Boosting Combinatorial Search Through Randomization , 1998, AAAI/IAAI.

[93]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[94]  Ronen I. Brafman,et al.  Introducing Variable Importance Tradeoffs into CP-Nets , 2002, UAI.

[95]  Henry A. Kautz,et al.  Solving Problems with Hard and Soft Constraints Using a Stochastic Algorithm for MAX-SAT , 1995 .

[96]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[97]  Inês Lynce,et al.  Efficient Haplotype Inference with Boolean Satisfiability , 2006, AAAI.

[98]  Bart Selman,et al.  Planning as Satisfiability , 1992, ECAI.

[99]  Yixin Chen,et al.  Plan-A : A Cost Optimal Planner Based on SAT-Constrained Optimization ∗ , 2008 .

[100]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[101]  Bart Selman,et al.  Encoding Plans in Propositional Logic , 1996, KR.

[102]  Bart Selman,et al.  Unifying SAT-based and Graph-based Planning , 1999, IJCAI.

[103]  Yixin Chen,et al.  Long-Distance Mutual Exclusion for Propositional Planning , 2007, IJCAI.

[104]  David A. McAllester,et al.  Systematic Nonlinear Planning , 1991, AAAI.

[105]  Albert Oliveras,et al.  MiniMaxSAT: An Efficient Weighted Max-SAT solver , 2008, J. Artif. Intell. Res..

[106]  Niklas Sörensson,et al.  Translating Pseudo-Boolean Constraints into SAT , 2006, J. Satisf. Boolean Model. Comput..

[107]  Xavier Pérez-Giménez,et al.  On the satisfiability threshold of formulas with three literals per clause , 2009, Theor. Comput. Sci..