Coordinated Optimization of Visual Cortical Maps (II) Numerical Studies

In the juvenile brain, the synaptic architecture of the visual cortex remains in a state of flux for months after the natural onset of vision and the initial emergence of feature selectivity in visual cortical neurons. It is an attractive hypothesis that visual cortical architecture is shaped during this extended period of juvenile plasticity by the coordinated optimization of multiple visual cortical maps such as orientation preference (OP), ocular dominance (OD), spatial frequency, or direction preference. In part (I) of this study we introduced a class of analytically tractable coordinated optimization models and solved representative examples, in which a spatially complex organization of the OP map is induced by interactions between the maps. We found that these solutions near symmetry breaking threshold predict a highly ordered map layout. Here we examine the time course of the convergence towards attractor states and optima of these models. In particular, we determine the timescales on which map optimization takes place and how these timescales can be compared to those of visual cortical development and plasticity. We also assess whether our models exhibit biologically more realistic, spatially irregular solutions at a finite distance from threshold, when the spatial periodicities of the two maps are detuned and when considering more than 2 feature dimensions. We show that, although maps typically undergo substantial rearrangement, no other solutions than pinwheel crystals and stripes dominate in the emerging layouts. Pinwheel crystallization takes place on a rather short timescale and can also occur for detuned wavelengths of different maps. Our numerical results thus support the view that neither minimal energy states nor intermediate transient states of our coordinated optimization models successfully explain the architecture of the visual cortex. We discuss several alternative scenarios that may improve the agreement between model solutions and biological observations.

[1]  J. Swift,et al.  Hydrodynamic fluctuations at the convective instability , 1977 .

[2]  W F Windle,et al.  The oxygen and carbon dioxide content of the blood of normal and pregnant decerebrate cats , 1939, The Journal of physiology.

[3]  Roman Bek,et al.  Discourse on one way in which a quantum-mechanics language on the classical logical base can be built up , 1978, Kybernetika.

[4]  D. L. Adams,et al.  Shadows Cast by Retinal Blood Vessels Mapped in Primary Visual Cortex , 2002, Science.

[5]  M. Stryker,et al.  Development of individual geniculocortical arbors in cat striate cortex and effects of binocular impulse blockade , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  D. Mitchell,et al.  Short periods of concordant binocular vision prevent the development of deprivation amblyopia , 2006, The European journal of neuroscience.

[7]  Jacobs Ae Intrinsic domain-wall pinning and spatial chaos in continuum models of one-dimensionally incommensurate systems. , 1986 .

[8]  Ha Youn Lee,et al.  Symmetry considerations and development of pinwheels in visual maps , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[9]  P. Coullet,et al.  Nature of spatial chaos. , 1987, Physical review letters.

[10]  Kenneth D Miller,et al.  π = Visual Cortex , 2010, Science.

[11]  Charles F. Stevens,et al.  A Universal Design Principle for Visual System Pinwheels , 2011, Brain, Behavior and Evolution.

[12]  Risto Miikkulainen,et al.  Joint maps for orientation, eye, and direction preference in a self-organizing model of V1 , 2006, Neurocomputing.

[13]  A. Grinvald,et al.  Spatial Relationships among Three Columnar Systems in Cat Area 17 , 1997, The Journal of Neuroscience.

[14]  Y. Pomeau Bifurcation in a random environment , 1993 .

[15]  Wenbin Zhang,et al.  Pattern formation in weakly damped parametric surface waves , 1996, Journal of Fluid Mechanics.

[16]  Dezhe Z. Jin,et al.  The Coordinated Mapping of Visual Space and Response Features in Visual Cortex , 2005, Neuron.

[17]  M. Cynader,et al.  Functional organization of the cortical 17/18 border region in the cat , 2004, Experimental Brain Research.

[18]  KD Miller A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  Y. Frégnac,et al.  Cellular analogs of visual cortical epigenesis. I. Plasticity of orientation selectivity , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  Stephen D. Van Hooser,et al.  Experience with moving visual stimuli drives the early development of cortical direction selectivity , 2008, Nature.

[21]  D. Fitzpatrick,et al.  The contribution of sensory experience to the maturation of orientation selectivity in ferret visual cortex , 2001, Nature.

[22]  Y. Frégnac,et al.  A cellular analogue of visual cortical plasticity , 1988, Nature.

[23]  R. Behringer,et al.  Pattern formation in an inhomogeneous environment , 1998 .

[24]  Denis Boyer,et al.  Grain boundary pinning and glassy dynamics in stripe phases. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  B. Boycott,et al.  Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[26]  Shraiman,et al.  Nonadiabatic effects in convection. , 1988, Physical review. A, General physics.

[27]  Klaus Obermayer,et al.  Singularities in Primate Orientation Maps , 1997, Neural Computation.

[28]  D. Mitchell,et al.  Protection against deprivation amblyopia depends on relative not absolute daily binocular exposure. , 2011, Journal of vision.

[29]  Frank Sengpiel,et al.  Neural mechanisms of recovery following early visual deprivation , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[30]  D. Ringach On the Origin of the Functional Architecture of the Cortex , 2007, PloS one.

[31]  Petruccione,et al.  Effects of disorder in pattern formation. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  R. Goebel,et al.  The role of feedback in shaping neural representations in cat visual cortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Mark Hübener,et al.  Critical-period plasticity in the visual cortex. , 2012, Annual review of neuroscience.

[34]  K. Miller,et al.  Correlation-Based Development of Ocularly Matched Orientation and Ocular Dominance Maps: Determination of Required Input Activities , 1998, The Journal of Neuroscience.

[35]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[36]  Siegrid Löwel,et al.  Optical imaging of orientation and ocular dominance maps in area 17 of cats with convergent strabismus , 2002, Visual Neuroscience.

[37]  Geoffrey J Goodhill,et al.  The Effect of Angioscotomas on Map Structure in Primary Visual Cortex , 2007, The Journal of Neuroscience.

[38]  Leonard E. White,et al.  Vision and Cortical Map Development , 2007, Neuron.

[39]  Jacobs Intrinsic domain-wall pinning and spatial chaos in continuum models of one-dimensionally incommensurate systems. , 1986, Physical review. B, Condensed matter.

[40]  D. Coppola,et al.  Universality in the Evolution of Orientation Columns in the Visual Cortex , 2010, Science.

[41]  Minoru Asada,et al.  Pinwheel Stability in a Non-Euclidean Model of Pattern Formation in the Visual Cortex , 2007 .

[42]  C. von der Malsburg,et al.  Establishment of a Scaffold for Orientation Maps in Primary Visual Cortex of Higher Mammals , 2008, The Journal of Neuroscience.

[43]  P. D. Spear,et al.  Critical periods for effects of monocular deprivation: differences between striate and extrastriate cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  Sooyoung Chung,et al.  Highly ordered arrangement of single neurons in orientation pinwheels , 2006, Nature.

[45]  Fred Wolf,et al.  Pinwheel stabilization by ocular dominance segregation. , 2009, Physical review letters.

[46]  Y. Frégnac,et al.  Cellular analogs of visual cortical epigenesis. II. Plasticity of binocular integration , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  Amiram Grinvald,et al.  Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns , 1991, Nature.

[48]  W. Singer,et al.  The pattern of ocular dominance columns in flat-mounts of the cat visual cortex , 2004, Experimental Brain Research.

[49]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[50]  R. Freeman,et al.  Profile of the sensitive period for monocular deprivation in kittens , 2004, Experimental Brain Research.

[51]  D. Fitzpatrick,et al.  Functional organization of visual cortex in the prosimian bush baby revealed by optical imaging of intrinsic signals. , 2005, Journal of neurophysiology.

[52]  David G. Jones,et al.  Analysis of the postnatal growth of visual cortex , 1998, Visual Neuroscience.

[53]  C. Blakemore,et al.  Environmental Modification of the Visual Cortex and the Neural Basis of Learning and Memory , 1973, Nature.

[54]  M. Stryker,et al.  Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. , 1978, The Journal of physiology.

[55]  D. L. Adams,et al.  Capricious expression of cortical columns in the primate brain , 2003, Nature Neuroscience.

[56]  K. Obermayer,et al.  Statistical-mechanical analysis of self-organization and pattern formation during the development of visual maps. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[57]  K. Pawelzik,et al.  How can squint change the spacing of ocular dominance columns? , 2000, Journal of Physiology-Paris.

[58]  T. Bonhoeffer,et al.  Pairing-Induced Changes of Orientation Maps in Cat Visual Cortex , 2001, Neuron.

[59]  Michel Imbert,et al.  Receptive field characteristics and plastic properties of visual cortical cells in kittens reared with or without visual experience , 2004, Experimental Brain Research.

[60]  Jianhua Cang,et al.  Critical Period Plasticity Matches Binocular Orientation Preference in the Visual Cortex , 2010, Neuron.

[61]  H. Ritter,et al.  Convergence properties of Kohonen's topology conserving maps: fluctuations, stability, and dimension selection , 1988, Biological Cybernetics.

[62]  G. Blasdel,et al.  Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  G. Blasdel,et al.  Voltage-sensitive dyes reveal a modular organization in monkey striate cortex , 1986, Nature.

[64]  D. Fitzpatrick,et al.  The development of direction selectivity in ferret visual cortex requires early visual experience , 2006, Nature Neuroscience.

[65]  Matthias Kaschube,et al.  Reorganization of columnar architecture in the growing visual cortex , 2009, Proceedings of the National Academy of Sciences.

[66]  F. Wolf,et al.  Self-organization and the selection of pinwheel density in visual cortical development , 2008, 0801.3651.

[67]  Dmitri B. Chklovskii,et al.  Orientation Preference Patterns in Mammalian Visual Cortex A Wire Length Minimization Approach , 2001, Neuron.

[68]  F. Wolf,et al.  Sequential Bifurcation and Dynamic Rearrangement of Columnar Patterns during Cortical Development , .

[69]  Fredric M. Wolf,et al.  Coordinated Optimization of Visual Cortical Maps (I) Symmetry-based Analysis , 2011, PLoS Comput. Biol..

[70]  P. Coullet,et al.  A generic mechanism for spatiotemporal intermittency , 1998 .

[71]  Romain Brette,et al.  Late Emergence of the Vibrissa Direction Selectivity Map in the Rat Barrel Cortex , 2011, The Journal of Neuroscience.

[72]  J. Movshon,et al.  Visual neural development. , 1981, Annual review of psychology.

[73]  J. Movshon Reversal of the physiological effects of monocular deprivation in the kitten's visual cortex. , 1976, The Journal of physiology.

[74]  R. Mains,et al.  Inducible Genetic Suppression of Neuronal Excitability , 1999, The Journal of Neuroscience.

[75]  Denis Boyer,et al.  Weakly nonlinear theory of grain boundary motion in patterns with crystalline symmetry. , 2002, Physical review letters.

[76]  M. Stryker,et al.  The role of visual experience in the development of columns in cat visual cortex. , 1998, Science.

[77]  J. Leo van Hemmen,et al.  Combined Hebbian development of geniculocortical and lateral connectivity in a model of primary visual cortex , 2001, Biological Cybernetics.

[78]  N. Swindale,et al.  How different feature spaces may be represented in cortical maps , 2004, Network.

[79]  Nicholas V. Swindale,et al.  A model for the coordinated development of columnar systems in primate striate cortex , 2004, Biological Cybernetics.

[80]  M. Stryker,et al.  Distinctive Features of Adult Ocular Dominance Plasticity , 2008, The Journal of Neuroscience.

[81]  Stephen Grossberg,et al.  Rules for the cortical map of ocular dominance and orientation columns , 1994, Neural Networks.

[82]  Fred Wolf,et al.  The layout of orientation and ocular dominance domains in area 17 of strabismic cats , 1998, The European journal of neuroscience.

[83]  M Imbert,et al.  Plasticity in the kitten's visual cortex: effects of the suppression of visual experience upon the orientational properties of visual cortical cells. , 1982, Brain research.

[84]  Paul Manneville,et al.  Dissipative Structures and Weak Turbulence , 1995 .

[85]  Min Huang Spatio-Temporal Dynamics of Pattern Formation in the Cerebral Cortex , 2009 .

[86]  Eberhard Bodenschatz,et al.  Recent Developments in Rayleigh-Bénard Convection , 2000 .

[87]  Klaus Schulten,et al.  Models of Orientation and Ocular Dominance Columns in the Visual Cortex: A Critical Comparison , 1995, Neural Computation.

[88]  G. Goodhill,et al.  Analysis of the elastic net model applied to the formation of ocular dominance and orientation columns. , 2000, Network.

[89]  Fred Wolf,et al.  The pattern of ocular dominance columns in cat primary visual cortex: intra‐ and interindividual variability of column spacing and its dependence on genetic background , 2003, The European journal of neuroscience.

[90]  M. Sur,et al.  Optically imaged maps of orientation preference in primary visual cortex of cats and ferrets , 1997, The Journal of comparative neurology.

[91]  J. Villablanca,et al.  The growth of the feline brain from late fetal into adult life. I. A morphometric study of the neocortex and white matter. , 2000, Brain research. Developmental brain research.

[92]  F. Wolf Symmetry, multistability, and long-range interactions in brain development. , 2005, Physical review letters.

[93]  F. Wolf Course 12 - Symmetry Breaking and Pattern Selection in Visual Cortical Development , 2005 .

[94]  M. Stryker,et al.  Development and Plasticity of the Primary Visual Cortex , 2012, Neuron.

[95]  M. Imbert,et al.  Ocular motility and recovery of orientational properties of visual cortical neurones in dark-reared kittens , 1978, Nature.

[96]  M. Stryker,et al.  Development of Orientation Preference Maps in Ferret Primary Visual Cortex , 1996, The Journal of Neuroscience.

[97]  S. Levay,et al.  Ocular dominance columns and their development in layer IV of the cat's visual cortex: A quantitative study , 1978, The Journal of comparative neurology.

[98]  A. Grinvald,et al.  Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[99]  Shigeru Tanaka,et al.  Theoretical and experimental studies of relationship between pinwheel centers and ocular dominance columns in the visual cortex , 2006, Neuroscience Research.

[100]  N. Swindale,et al.  A model for the formation of orientation columns , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[101]  Risto Miikkulainen,et al.  Self-Organization of Spatiotemporal Receptive Fields and Laterally Connected Direction and Orientation Maps , 2002, Neurocomputing.

[102]  David H. Goldberg,et al.  Structured Long-Range Connections Can Provide a Scaffold for Orientation Maps , 2000, The Journal of Neuroscience.

[103]  Daniel N. Hill,et al.  Development of Direction Selectivity in Mouse Cortical Neurons , 2011, Neuron.

[104]  Hisashi Mori,et al.  Separable features of visual cortical plasticity revealed by N-methyl-d-aspartate receptor 2A signaling , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[105]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[106]  Konrad Lehmann,et al.  Age-Dependent Ocular Dominance Plasticity in Adult Mice , 2008, PloS one.

[107]  Yousef Saad,et al.  Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..

[108]  C. Malsburg Self-organization of orientation sensitive cells in the striate cortex , 2004, Kybernetik.

[109]  D. Fitzpatrick,et al.  A systematic map of direction preference in primary visual cortex , 1996, Nature.

[110]  N. Daw,et al.  Critical period for monocular deprivation in the cat visual cortex. , 1992, Journal of neurophysiology.

[111]  K. Albus,et al.  Early post‐natal development of neuronal function in the kitten's visual cortex: a laminar analysis. , 1984, The Journal of physiology.

[112]  M. A. Carreira-Perpiñán,et al.  A computational model for the development of multiple maps in primary visual cortex. , 2005, Cerebral cortex.

[113]  Walter Zimmermann,et al.  Effects of parametric disorder on a stationary bifurcation , 2006 .

[114]  Y. Pomeau Front motion, metastability and subcritical bifurcations in hydrodynamics , 1986 .

[115]  K. Obermayer,et al.  Organization of ocular dominance and orientation columns in the striate cortex of neonatal macaque monkeys , 1995, Visual Neuroscience.

[116]  Tobias Bonhoeffer,et al.  Development of identical orientation maps for two eyes without common visual experience , 1996, Nature.

[117]  D. Mitchell,et al.  Period of susceptibility of kitten visual cortex to the effects of monocular deprivation extends beyond six months of age , 1980, Brain Research.

[118]  D. Hubel,et al.  The period of susceptibility to the physiological effects of unilateral eye closure in kittens , 1970, The Journal of physiology.

[119]  W Singer,et al.  Tangential intracortical pathways and the development of iso-orientation bands in cat striate cortex. , 1990, Brain research. Developmental brain research.

[120]  N. Swindale,et al.  How many maps are there in visual cortex? , 2000, Cerebral cortex.

[121]  M. W. Cho,et al.  Understanding visual map formation through vortex dynamics of spin Hamiltonian models. , 2003, Physical review letters.

[122]  M. V. Tsodyks,et al.  Intracortical origin of visual maps , 2001, Nature Neuroscience.

[123]  F. Wolf,et al.  Genetic Influence on Quantitative Features of Neocortical Architecture , 2002, The Journal of Neuroscience.

[124]  F. Sengpiel,et al.  Reorganization of Visual Cortical Maps after Focal Ischemic Lesions , 2003, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[125]  T. Wiesel,et al.  The distribution of afferents representing the right and left eyes in the cat's visual cortex , 1977, Brain Research.

[126]  M. Cynader,et al.  Surface organization of orientation and direction selectivity in cat area 18 , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[127]  A. Grinvald,et al.  The layout of iso-orientation domains in area 18 of cat visual cortex: optical imaging reveals a pinwheel-like organization , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[128]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[129]  Siegrid Löwel,et al.  The growth of cat cerebral cortex in postnatal life: a magnetic resonance imaging study , 2003, The European journal of neuroscience.

[130]  M. Sur,et al.  Alteration of Visual Input Results in a Coordinated Reorganization of Multiple Visual Cortex Maps , 2007, The Journal of Neuroscience.

[131]  K. Obermayer,et al.  Geometry of orientation and ocular dominance columns in monkey striate cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[132]  M. W. Cho,et al.  Different ocular dominance map formation influenced by orientation preference columns in visual cortices. , 2003, Physical review letters.

[133]  K. Miller,et al.  Ocular dominance column development: analysis and simulation. , 1989, Science.

[134]  Fred Wolf,et al.  Interareal coordination of columnar architectures during visual cortical development , 2008, Proceedings of the National Academy of Sciences.

[135]  B. Malomed,et al.  Domain boundaries in convection patterns. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[136]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[137]  A. Grinvald,et al.  Functional Organization for Direction of Motion and Its Relationship to Orientation Maps in Cat Area 18 , 1996, The Journal of Neuroscience.

[138]  N. D. Mermin,et al.  The topological theory of defects in ordered media , 1979 .

[139]  M. Stryker,et al.  Spatial Frequency Maps in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[140]  西田 昌平 Radiative B meson decays into Kπγ and Kππγ final states , 2003 .

[141]  C. Blakemore,et al.  Reversal of the physiological effects of monocular deprivation in kittens: further evidence for a sensitive period , 1974, The Journal of physiology.

[142]  A. Soward,et al.  Bifurcation and stability of finite amplitude convection in a rotating layer , 1985 .

[143]  Henry S. Greenside,et al.  Pattern Formation and Dynamics in Nonequilibrium Systems , 2004 .

[144]  J. Cowan,et al.  The visual cortex as a crystal , 2002 .

[145]  D. Mitchell,et al.  Daily mixed visual experience that prevents amblyopia in cats does not always allow the development of good binocular depth perception. , 2009, Journal of vision.

[146]  N. Swindale The development of topography in the visual cortex: a review of models. , 1996, Network.

[147]  T. Wiesel,et al.  Functional architecture of cortex revealed by optical imaging of intrinsic signals , 1986, Nature.

[148]  D. Ringach,et al.  Retinal origin of orientation maps in visual cortex , 2011, Nature Neuroscience.

[149]  F. Wolf,et al.  Random waves in the brain: Symmetries and defect generation in the visual cortex , 2007 .

[150]  F. Busse,et al.  Non-linear properties of thermal convection , 1978 .

[151]  D. Coppola,et al.  Response to Comment on “Universality in the Evolution of Orientation Columns in the Visual Cortex“ , 2012, Science.

[152]  Dario L Ringach,et al.  Haphazard wiring of simple receptive fields and orientation columns in visual cortex. , 2004, Journal of neurophysiology.

[153]  R. Soodak The retinal ganglion cell mosaic defines orientation columns in striate cortex. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[154]  Siegrid Löwel,et al.  Postnatal growth and column spacing in cat primary visual cortex , 2003, Experimental Brain Research.

[155]  C. Gilbert,et al.  Distortions of visuotopic map match orientation singularities in primary visual cortex , 1997, Nature.

[156]  F. Wolf,et al.  Spontaneous pinwheel annihilation during visual development , 1998, Nature.

[157]  Darren Michael Pierre,et al.  Modeling orientation and ocular dominance columns in the visual cortex , 1997 .

[158]  David J. Anderson,et al.  Selective Electrical Silencing of Mammalian Neurons In Vitro by the Use of Invertebrate Ligand-Gated Chloride Channels , 2002, The Journal of Neuroscience.

[159]  Y. Frégnac,et al.  Development of neuronal selectivity in primary visual cortex of cat. , 1984, Physiological reviews.

[160]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[161]  A. Grinvald,et al.  Optical Imaging of the Layout of Functional Domains in Area 17 and Across the Area 17/18 Border in Cat Visual Cortex , 1995, The European journal of neuroscience.