Self-Organization, Plasticity, and Low-Level Visual Phenomena in a Laterally Connected Map Model of the Primary Visual Cortex

[1]  J. Gibson,et al.  Adaptation, after-effect and contrast in the perception of tilted lines. I. Quantitative studies , 1937 .

[2]  H. Wallach,et al.  Figural aftereffects; an investigation of visual processes. , 1944 .

[3]  J. Knott The organization of behavior: A neuropsychological theory , 1951 .

[4]  P. McEwen Figural after-effects , 1958 .

[5]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[6]  N. Sutherland Figural After-Effects and Apparent Size , 1961 .

[7]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[8]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[9]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[10]  G. F. Cooper,et al.  The spatial selectivity of the visual cells of the cat , 1969, The Journal of physiology.

[11]  D. N. Spinelli,et al.  Visual Experience Modifies Distribution of Horizontally and Vertically Oriented Receptive Fields in Cats , 1970, Science.

[12]  G. F. Cooper,et al.  Development of the Brain depends on the Visual Environment , 1970, Nature.

[13]  F. Campbell,et al.  The tilt after-effect: a fresh look. , 1971, Vision research.

[14]  M. Coltheart Visual feature-analyzers and after-effects of tilt and curvature. , 1971, Psychological review.

[15]  H B Barlow,et al.  Single units and sensation: a neuron doctrine for perceptual psychology? , 1972, Perception.

[16]  D. Hubel,et al.  Sequence regularity and geometry of orientation columns in the monkey striate cortex , 1974, The Journal of comparative neurology.

[17]  R Bäuerle [Vibrotactile information transfer using sequences of binary signals]. , 1974, Kybernetik.

[18]  T. Powell,et al.  The intrinsic, association and commissural connections of area 17 on the visual cortex. , 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[19]  C. Blakemore,et al.  Innate and environmental factors in the development of the kitten's visual cortex. , 1975, The Journal of physiology.

[20]  D. Tolhurst,et al.  Orientation illusions and after-effects: Inhibition between channels , 1975, Vision Research.

[21]  D. Mitchell,et al.  Does the tilt after-effect occur in the oblique meridian? , 1976, Vision Research.

[22]  C. Malsburg,et al.  How patterned neural connections can be set up by self-organization , 1976, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[23]  D. Hubel,et al.  Plasticity of ocular dominance columns in monkey striate cortex. , 1977, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[24]  S. Amari Topographic organization of nerve fields , 1979, Neuroscience Letters.

[25]  Shun-Ichi Amari,et al.  Topographic organization of nerve fields , 1979, Neuroscience Letters.

[26]  M. Silverman,et al.  Spatial frequency columns in primary visual cortex. , 1981, Science.

[27]  T. Kohonen Self-organized formation of topographically correct feature maps , 1982 .

[28]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  K. D. De Valois,et al.  Spatial‐frequency‐specific inhibition in cat striate cortex cells. , 1983, The Journal of physiology.

[30]  T. Wiesel,et al.  Clustered intrinsic connections in cat visual cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  H. Barlow The Twelfth Bartlett Memorial Lecture: The Role of Single Neurons in the Psychology of Perception , 1985, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[32]  G. Blasdel,et al.  Voltage-sensitive dyes reveal a modular organization in monkey striate cortex , 1986, Nature.

[33]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[34]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[35]  H. Wigström,et al.  Physiological mechanisms underlying long-term potentiation , 1988, Trends in Neurosciences.

[36]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. V. Spatial frequency , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  Y. Frégnac The Neural and Molecular Bases of Learning (Life Sciences Report 38 — Dahlem Konferenzen) edited by J. P. Changeux and M. Konishi, John Wiley & Sons, 1987. £55.00 (xiii + 559 pages) ISBN 0 471 91569 6 , 1988, Trends in Neurosciences.

[38]  D. Purves Body and Brain: A Trophic Theory of Neural Connections , 1988 .

[39]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. III. Color , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  W. J. Nowack Neurobiology of Neocortex , 1989, Neurology.

[41]  H. Berg Cold Spring Harbor Symposia on Quantitative Biology.: Vol. LII. Evolution of Catalytic Functions. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1987, ISBN 0-87969-054-2, xix + 955 pp., US $150.00. , 1989 .

[42]  K. Miller,et al.  Ocular dominance column development: analysis and simulation. , 1989, Science.

[43]  M. Silverman,et al.  Spatial-frequency organization in primate striate cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[44]  T. Wiesel,et al.  Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[46]  K D Miller,et al.  Experimental and theoretical studies of the organization of afferents to single orientation columns in visual cortex. , 1990, Cold Spring Harbor Symposia on Quantitative Biology.

[47]  R Linsker,et al.  Perceptual neural organization: some approaches based on network models and information theory. , 1990, Annual review of neuroscience.

[48]  H. Ritter,et al.  A principle for the formation of the spatial structure of cortical feature maps. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Reinhard Eckhorn,et al.  Feature Linking via Synchronization among Distributed Assemblies: Simulations of Results from Cat Visual Cortex , 1990, Neural Computation.

[50]  G. Recanzone,et al.  Adaptive mechanisms in cortical networks underlying cortical contributions to learning and nondeclarative memory. , 1990, Cold Spring Harbor symposia on quantitative biology.

[51]  Christoph von der Malsburg,et al.  Network self-organization , 1990 .

[52]  Trichur Raman Vidyasagar Pattern adaptation in cat visual cortex is a co-operative phenomenon , 1990, Neuroscience.

[53]  E. Callaway,et al.  Emergence and refinement of clustered horizontal connections in cat striate cortex , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  T. Wiesel,et al.  Lateral interactions in visual cortex. , 1990, Cold Spring Harbor symposia on quantitative biology.

[55]  Richard Durbin,et al.  A dimension reduction framework for understanding cortical maps , 1990, Nature.

[56]  P König,et al.  Formation of cortical cell assemblies. , 1990, Cold Spring Harbor symposia on quantitative biology.

[57]  H. Barlow Vision: A theory about the functional role and synaptic mechanism of visual after-effects , 1991 .

[58]  A. B. Bonds,et al.  Inhibitory refinement of spatial frequency selectivity in single cells of the cat striate cortex , 1991, Vision Research.

[59]  Colin Blakemore,et al.  Vision: Coding and Efficiency , 1991 .

[60]  D. Baylor,et al.  Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. , 1991, Science.

[61]  J. Kaas Plasticity of sensory and motor maps in adult mammals. , 1991, Annual review of neuroscience.

[62]  C. Gilbert,et al.  Synaptic physiology of horizontal connections in the cat's visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  E. Callaway,et al.  Effects of binocular deprivation on the development of clustered horizontal connections in cat striate cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[64]  W. Singer,et al.  Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. , 1992, Science.

[65]  K. Obermayer,et al.  Statistical-mechanical analysis of self-organization and pattern formation during the development of visual maps. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[66]  C. Gilbert Horizontal integration and cortical dynamics , 1992, Neuron.

[67]  G. Blasdel,et al.  Orientation selectivity, preference, and continuity in monkey striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  J. S. McCasland,et al.  Cortical local circuit axons do not mature after early deafferentation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[69]  M. Pettet,et al.  Dynamic changes in receptive-field size in cat primary visual cortex. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[70]  H. Pashler,et al.  Improvement in line orientation discrimination is retinally local but dependent on cognitive set , 1992, Perception & psychophysics.

[71]  L C Katz,et al.  Development of local circuits in mammalian visual cortex. , 1992, Annual review of neuroscience.

[72]  Helge J. Ritter,et al.  Neural computation and self-organizing maps - an introduction , 1992, Computation and neural systems series.

[73]  Herbert J. Reitboeck,et al.  Object separation in dynamic neural networks , 1993, IEEE International Conference on Neural Networks.

[74]  H. Tamura,et al.  Development of local horizontal interactions in cat visual cortex studied by cross-correlation analysis. , 1993, Journal of neurophysiology.

[75]  Shimon Edelman,et al.  Models of Perceptual Learning in Vernier Hyperacuity , 1993, Neural Computation.

[76]  Teuvo Kohonen,et al.  Physiological interpretationm of the self-organizing map algorithm , 1993 .

[77]  A. Grinvald,et al.  Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[78]  A. Burkhalter,et al.  Development of local circuits in human visual cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[79]  K Tanaka,et al.  Neuronal mechanisms of object recognition. , 1993, Science.

[80]  C. Shatz,et al.  Transient period of correlated bursting activity during development of the mammalian retina , 1993, Neuron.

[81]  Teuvo Kohonen,et al.  Physiological interpretation of the Self-Organizing Map algorithm , 1993, Neural Networks.

[82]  R. Frostig,et al.  Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[83]  Kenneth D. Miller,et al.  The Role of Constraints in Hebbian Learning , 1994, Neural Computation.

[84]  S Löwel,et al.  Ocular dominance column development: strabismus changes the spacing of adjacent columns in cat visual cortex. , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[85]  KD Miller A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[86]  M. Dalva,et al.  Rearrangements of synaptic connections in visual cortex revealed by laser photostimulation. , 1994, Science.

[87]  David J. Field,et al.  What Is the Goal of Sensory Coding? , 1994, Neural Computation.

[88]  G Westheimer,et al.  A quantitative measure for short-term cortical plasticity in human vision , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[89]  T. Poggio,et al.  Fast perceptual learning in hyperacuity , 1995, Vision Research.

[90]  Klaus Schulten,et al.  Models of Orientation and Ocular Dominance Columns in the Visual Cortex: A Critical Comparison , 1995, Neural Computation.

[91]  Joel L. Davis,et al.  An Introduction to Neural and Electronic Networks , 1995 .

[92]  Harel Z. Shouval,et al.  Formation and Organization of Receptive fields, with an input Environment Composed of Natural Scenes , 1995 .

[93]  Risto Miikkulainen,et al.  Topographic Receptive Fields and Patterned Lateral Interaction in a Self-Organizing Model of the Primary Visual Cortex , 1997, Neural Computation.

[94]  Risto Miikkulainen,et al.  A Self-Organizing Neural Network Model of the Primary Visual Cortex , 1998, ICONIP.

[95]  Terrence J. Sejnowski,et al.  Unsupervised Learning , 2018, Encyclopedia of GIS.

[96]  J. Changeux,et al.  SYNAPTIC PLASTICITY AS BASIS OF BRAIN ORGANIZATION , 2022 .

[97]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .