The sparsest solutions to Z-tensor complementarity problems

Finding the sparsest solutions to a tensor complementarity problem is generally NP-hard due to the nonconvexity and noncontinuity of the involved $$\ell _0$$ℓ0 norm. In this paper, a special type of tensor complementarity problems with Z-tensors has been considered. Under some mild conditions, we show that to pursuit the sparsest solutions is equivalent to solving polynomial programming with a linear objective function. The involved conditions guarantee the desired exact relaxation and also allow to achieve a global optimal solution to the relaxed nonconvex polynomial programming problem. Particularly, in comparison to existing exact relaxation conditions, such as RIP-type ones, our proposed conditions are easy to verify.

[1]  Tamara G. Kolda,et al.  Numerical optimization for symmetric tensor decomposition , 2014, Mathematical Programming.

[2]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[3]  Thomas Blumensath,et al.  Compressed Sensing With Nonlinear Observations and Related Nonlinear Optimization Problems , 2012, IEEE Transactions on Information Theory.

[4]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[5]  Yimin Wei,et al.  Positive-Definite Tensors to Nonlinear Complementarity Problems , 2015, J. Optim. Theory Appl..

[6]  Xiaodong Li,et al.  Sparse Signal Recovery from Quadratic Measurements via Convex Programming , 2012, SIAM J. Math. Anal..

[7]  H. Amann Fixed Point Equations and Nonlinear Eigenvalue Problems in Ordered Banach Spaces , 1976 .

[8]  David L. Donoho,et al.  Precise Undersampling Theorems , 2010, Proceedings of the IEEE.

[9]  L. Qi,et al.  Z-tensors and complementarity problems , 2015, 1510.07933.

[10]  Rebecca Willett,et al.  SPIRAL out of convexity: sparsity-regularized algorithms for photon-limited imaging , 2010, Electronic Imaging.

[11]  Chao Zhang,et al.  Minimal Zero Norm Solutions of Linear Complementarity Problems , 2014, J. Optim. Theory Appl..

[12]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[13]  Arie Tamir,et al.  Minimality and complementarity properties associated with Z-functions and M-functions , 1974, Math. Program..

[14]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[15]  Xiaojun Chen,et al.  Non-Lipschitz $\ell_{p}$-Regularization and Box Constrained Model for Image Restoration , 2012, IEEE Transactions on Image Processing.

[16]  W. Rheinboldt On M-functions and their application to nonlinear Gauss-Seidel iterations and to network flows☆ , 1970 .

[17]  Qingzhi Yang,et al.  Further Results for Perron-Frobenius Theorem for Nonnegative Tensors , 2010, SIAM J. Matrix Anal. Appl..

[18]  Zizhuo Wang,et al.  Complexity of Unconstrained L2-Lp Minimization , 2011 .

[19]  Yin Zhang,et al.  Theory of Compressive Sensing via ℓ1-Minimization: a Non-RIP Analysis and Extensions , 2013 .

[20]  L. Qi,et al.  M-tensors and nonsingular M-tensors , 2013, 1307.7333.

[21]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[22]  Arkadi Nemirovski,et al.  On verifiable sufficient conditions for sparse signal recovery via ℓ1 minimization , 2008, Math. Program..

[23]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[24]  Yimin Wei,et al.  Solving Multi-linear Systems with $$\mathcal {M}$$M-Tensors , 2016, J. Sci. Comput..

[25]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[26]  Henrik Ohlsson,et al.  Finding sparse solutions of systems of polynomial equations via group-sparsity optimization , 2015, J. Glob. Optim..

[27]  Liqun Qi,et al.  Properties of Some Classes of Structured Tensors , 2014, Journal of Optimization Theory and Applications.

[28]  Gene H. Golub,et al.  Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..

[29]  Zongben Xu,et al.  $L_{1/2}$ Regularization: A Thresholding Representation Theory and a Fast Solver , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[30]  Xiaojun Chen,et al.  Complexity of unconstrained $$L_2-L_p$$ minimization , 2011, Math. Program..

[31]  Liqun Qi,et al.  Properties of Tensor Complementarity Problem and Some Classes of Structured Tensors , 2014, 1412.0113.

[32]  Yun-Bin Zhao,et al.  RSP-Based Analysis for Sparsest and Least $\ell_1$-Norm Solutions to Underdetermined Linear Systems , 2013, IEEE Transactions on Signal Processing.

[33]  G. Isac Complementarity Problems , 1992 .

[34]  Liqun Qi,et al.  M-Tensors and Some Applications , 2014, SIAM J. Matrix Anal. Appl..

[35]  Alexandros G. Dimakis,et al.  Sparse Recovery of Nonnegative Signals With Minimal Expansion , 2011, IEEE Transactions on Signal Processing.

[36]  Xiaojun Chen,et al.  Sparse solutions of linear complementarity problems , 2016, Math. Program..

[37]  Naihua Xiu,et al.  The Nonnegative Zero-Norm Minimization Under Generalized Z-Matrix Measurement , 2014, J. Optim. Theory Appl..

[38]  Yi-min Wei,et al.  ℋ-tensors and nonsingular ℋ-tensors , 2016 .

[39]  S. Foucart,et al.  Sparsest solutions of underdetermined linear systems via ℓq-minimization for 0 , 2009 .

[40]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[41]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..

[42]  Richard Baraniuk,et al.  DNA Array Decoding from Nonlinear Measurements by Belief Propagation , 2007, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing.