Inhibitory Control of Linear and Supralinear Dendritic Excitation in CA1 Pyramidal Neurons

The transformation of dendritic excitatory synaptic inputs to axonal action potential output is the fundamental computation performed by all principal neurons. We show that in the hippocampus this transformation is potently controlled by recurrent inhibitory microcircuits. However, excitatory input on highly excitable dendritic branches could resist inhibitory control by generating strong dendritic spikes and trigger precisely timed action potential output. Furthermore, we show that inhibition-sensitive branches can be transformed into inhibition-resistant, strongly spiking branches by intrinsic plasticity of branch excitability. In addition, we demonstrate that the inhibitory control of spatially defined dendritic excitation is strongly regulated by network activity patterns. Our findings suggest that dendritic spikes may serve to transform correlated branch input into reliable and temporally precise output even in the presence of inhibition.

[1]  Tobias Bonhoeffer,et al.  Activity-Dependent Clustering of Functional Synaptic Inputs on Developing Hippocampal Dendrites , 2011, Neuron.

[2]  Y. Dan,et al.  An arithmetic rule for spatial summation of excitatory and inhibitory inputs in pyramidal neurons , 2009, Proceedings of the National Academy of Sciences.

[3]  D. Coulter,et al.  In vitro functional imaging in brain slices using fast voltage-sensitive dye imaging combined with whole-cell patch recording , 2008, Nature Protocols.

[4]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[5]  C. H. Vanderwolf,et al.  Hippocampal electrical activity and voluntary movement in the rat. , 1969, Electroencephalography and clinical neurophysiology.

[6]  S. Antic,et al.  Fast optical recordings of membrane potential changes from dendrites of pyramidal neurons. , 1999, Journal of neurophysiology.

[7]  Daniel Johnston,et al.  LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites , 2004, Nature Neuroscience.

[8]  P. Somogyi,et al.  Synaptic target selectivity and input of GABAergic basket and bistratified interneurons in the CA1 area of the rat hippocampus , 1996, Hippocampus.

[9]  T. Poggio,et al.  Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[10]  J. B. Ranck,et al.  Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. I. Behavioral correlates and firing repertoires. , 1973, Experimental neurology.

[11]  A. Thomson,et al.  Facilitating pyramid to horizontal oriens‐alveus interneurone inputs: dual intracellular recordings in slices of rat hippocampus , 1998, The Journal of physiology.

[12]  J. Deuchars,et al.  CA1 pyramidal to basket and bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices , 1998, The Journal of physiology.

[13]  E. Schuman,et al.  Direct cortical input modulates plasticity and spiking in CA1 pyramidal neurons , 2002, Nature.

[14]  T. Freund,et al.  Differences between Somatic and Dendritic Inhibition in the Hippocampus , 1996, Neuron.

[15]  N. Spruston,et al.  Dendritic spikes induce single-burst long-term potentiation , 2007, Proceedings of the National Academy of Sciences.

[16]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[17]  Judit K. Makara,et al.  Experience-dependent compartmentalized dendritic plasticity in rat hippocampal CA1 pyramidal neurons , 2009, Nature Neuroscience.

[18]  R. Nicoll,et al.  Pharmacological evidence for two kinds of GABA receptors on rat hippocampal pyramidal cells studied in vitro , 1982, The Journal of physiology.

[19]  Massimo Scanziani,et al.  Routing of spike series by dynamic circuits in the hippocampus , 2004, Nature.

[20]  B. Sakmann,et al.  Action potential initiation and propagation in rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[21]  Judit K. Makara,et al.  Compartmentalized dendritic plasticity and input feature storage in neurons , 2008, Nature.

[22]  Roberto Malinow,et al.  Compartmentalized versus Global Synaptic Plasticity on Dendrites Controlled by Experience , 2011, Neuron.

[23]  P. Goldman-Rakic,et al.  Burst generation in rat pyramidal neurones by regenerative potentials elicited in a restricted part of the basilar dendritic tree , 2004, The Journal of physiology.

[24]  R. Miles,et al.  Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells of the guinea‐pig in vitro. , 1990, The Journal of physiology.

[25]  L. Nadel,et al.  The Hippocampus as a Cognitive Map , 1978 .

[26]  J. A. Payne,et al.  Mechanism of Activity-Dependent Downregulation of the Neuron-Specific K-Cl Cotransporter KCC2 , 2004, The Journal of Neuroscience.

[27]  G. Dubé,et al.  High-resolution iontophoresis for single-synapse stimulation , 2002, Journal of Neuroscience Methods.

[28]  T. Fuchs,et al.  GABAA Receptor Trafficking-Mediated Plasticity of Inhibitory Synapses , 2011, Neuron.

[29]  Chris J. McBain,et al.  Interneurons unbound , 2001, Nature Reviews Neuroscience.

[30]  D. Johnston,et al.  K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons , 1997, Nature.

[31]  K. Holthoff,et al.  Single‐shock LTD by local dendritic spikes in pyramidal neurons of mouse visual cortex , 2004, The Journal of physiology.

[32]  S. Hoffman,et al.  Funding for malaria genome sequencing , 1997, Nature.

[33]  R. Yuste,et al.  Linear Summation of Excitatory Inputs by CA1 Pyramidal Neurons , 1999, Neuron.

[34]  M. Poo,et al.  Coincident Pre- and Postsynaptic Activity Modifies GABAergic Synapses by Postsynaptic Changes in Cl− Transporter Activity , 2003, Neuron.

[35]  G. Buzsáki,et al.  Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  P. Somogyi,et al.  Defined types of cortical interneurone structure space and spike timing in the hippocampus , 2005, The Journal of physiology.

[37]  D. Coulter,et al.  Hippocampal CA1 Circuitry Dynamically Gates Direct Cortical Inputs Preferentially at Theta Frequencies , 2005, The Journal of Neuroscience.

[38]  A. Polsky,et al.  Submillisecond Precision of the Input-Output Transformation Function Mediated by Fast Sodium Dendritic Spikes in Basal Dendrites of CA1 Pyramidal Neurons , 2003, The Journal of Neuroscience.

[39]  J. O’Neill,et al.  Place-Selective Firing of CA1 Pyramidal Cells during Sharp Wave/Ripple Network Patterns in Exploratory Behavior , 2006, Neuron.

[40]  R. Nicoll,et al.  Feed‐forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro , 1982, The Journal of physiology.

[41]  J. Magee,et al.  Integrative Properties of Radial Oblique Dendrites in Hippocampal CA1 Pyramidal Neurons , 2006, Neuron.

[42]  J. Csicsvari,et al.  Ensemble Patterns of Hippocampal CA3-CA1 Neurons during Sharp Wave–Associated Population Events , 2000, Neuron.

[43]  J. Csicsvari,et al.  Oscillatory Coupling of Hippocampal Pyramidal Cells and Interneurons in the Behaving Rat , 1999, The Journal of Neuroscience.

[44]  C. Jahr,et al.  Axonal GABAA Receptors Increase Cerebellar Granule Cell Excitability and Synaptic Activity , 2011, The Journal of Neuroscience.

[45]  J. Magee,et al.  On the Initiation and Propagation of Dendritic Spikes in CA1 Pyramidal Neurons , 2004, The Journal of Neuroscience.

[46]  Jozsef Csicsvari,et al.  Activity-Dependent Control of Neuronal Output by Local and Global Dendritic Spike Attenuation , 2009, Neuron.

[47]  F. Krasne,et al.  Evidence for a computational distinction between proximal and distal neuronal inhibition. , 1992, Science.

[48]  Nace L. Golding,et al.  Dendritic Sodium Spikes Are Variable Triggers of Axonal Action Potentials in Hippocampal CA1 Pyramidal Neurons , 1998, Neuron.

[49]  Robert J. Morgan,et al.  Regulation of Fast-Spiking Basket Cell Synapses by the Chloride Channel ClC–2 , 2010, Nature Neuroscience.

[50]  P. Best,et al.  Place cells and silent cells in the hippocampus of freely-behaving rats , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  Jeffry S. Isaacson,et al.  From Dendrite to Soma: Dynamic Routing of Inhibition by Complementary Interneuron Microcircuits in Olfactory Cortex , 2010, Neuron.

[52]  S. Moss,et al.  NMDA receptor activity downregulates KCC2 resulting in depolarizing GABAA receptor mediated currents , 2011, Nature Neuroscience.

[53]  E. Schuman,et al.  Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory , 2004, Nature.

[54]  D. Ferster,et al.  EPSP-IPSP interactions in cat visual cortex studied with in vivo whole- cell patch recording , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[56]  Nace L. Golding,et al.  Dendritic spikes as a mechanism for cooperative long-term potentiation , 2002, Nature.

[57]  R. Nicoll,et al.  A bicuculline‐resistant inhibitory post‐synaptic potential in rat hippocampal pyramidal cells in vitro. , 1984, The Journal of physiology.