A quantitative approach to logical inference

Logical inference is of central importance in the information and decision sciences but presents a very hard computational problem. Since the traditional symbolic inference methods have had limited success on large knowledge bases, this papers investigates a quantitative approach. It surveys the application of integer programming methods to inference problems in propositional logic. It displays a number of remarkable parallels between logic and mathematics and shows that these can lead to fast inference methods, both quantitative and symbolic. In particular it explains why the logical concepts of resolution, extended resolution, input and unit refutation, the Davis-Putnam procedure, and drawing of inferences pertinent to a given topic are closely related to the mathematical concepts of cutting planes, Chvatal's method, elementary closure, branch and bound, and projection of a polytope, respectively. Much of the paper should be intelligible to persons with limited background in logic and mathematical programming, but recent mathematical results are stated precisely.

[1]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[2]  Donald A. Waterman,et al.  A Guide to Expert Systems , 1986 .

[3]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[4]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[5]  D. Luckham Refinement Theorems in Resolution Theory , 1970 .

[6]  Robert G. Jeroslow On monotone chaining procedures of the CF type , 1988, Decis. Support Syst..

[7]  David H. D. Warren,et al.  Prolog - the language and its implementation compared with Lisp , 1977, Artificial Intelligence and Programming Languages.

[8]  Chin-Liang Chang The Unit Proof and the Input Proof in Theorem Proving , 1970, JACM.

[9]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[10]  H. P. Williams,et al.  Model Building in Mathematical Programming , 1979 .

[11]  Susan Haack Deviant Logic: Some Philosophical Issues , 1974 .

[12]  Alonzo Church,et al.  A note on the Entscheidungsproblem , 1936, Journal of Symbolic Logic.

[13]  Armin Haken,et al.  The Intractability of Resolution , 1985, Theor. Comput. Sci..

[14]  Raymond Turner Logics in Artificial Intelligence , 1984, Lecture Notes in Computer Science.

[15]  Michael R. Genesereth,et al.  Logical foundations of artificial intelligence , 1987 .

[16]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[17]  E. McCluskey Minimization of Boolean functions , 1956 .

[18]  H. P. Williams Linear and integer programming applied to the propositional calculus , 1987 .

[19]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[20]  Monique Guignard-Spielberg,et al.  Logical Reduction Methods in Zero-One Programming - Minimal Preferred Variables , 1981, Oper. Res..

[21]  H. E. Pople,et al.  Internist-I, an Experimental Computer-Based Diagnostic Consultant for General Internal Medicine , 1982 .

[22]  Averill M. Law,et al.  The art and theory of dynamic programming , 1977 .

[23]  J. K. Lowe,et al.  Some results and experiments in programming techniques for propositional logic , 1986, Comput. Oper. Res..

[24]  Harry R. Lewis,et al.  Complexity Results for Classes of Quantificational Formulas , 1980, J. Comput. Syst. Sci..

[25]  H. Paul Williams,et al.  Fourier-Motzkin Elimination Extension to Integer Programming Problems , 1976, J. Comb. Theory, Ser. A.

[26]  Donald W. Loveland Theorem-Provers Combining Model Elimination and Resolution , 1983 .

[27]  John Franco,et al.  Probabilistic analysis of the Davis Putnam procedure for solving the satisfiability problem , 1983, Discret. Appl. Math..

[28]  Robert G. Jeroslow,et al.  Computation-oriented reductions of predicate to propositional logic , 1988, Decis. Support Syst..

[29]  Charles Eugene Blair Two Rules for Deducing Valid Inequalities for 0-1 Problems , 1976 .

[30]  Willard Van Orman Quine,et al.  A Way to Simplify Truth Functions , 1955 .

[31]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  H. P. Williams Logical problems and integer programming , 1977 .

[33]  G. Nemhauser,et al.  Integer Programming , 2020 .

[34]  Jack Minker,et al.  Logic and Databases: A Deductive Approach , 1984, CSUR.

[35]  Manfred W. Padberg,et al.  A note on the total unimodularity of matrices , 1976, Discret. Math..

[36]  Larry Wos,et al.  Efficiency and Completeness of the Set of Support Strategy in Theorem Proving , 1965, JACM.

[37]  George Boole,et al.  The mathematical analysis of logic , 1948 .

[38]  Jean H. Gallier,et al.  Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn Formulae , 1984, J. Log. Program..

[39]  Ralph E. Gomory,et al.  An algorithm for integer solutions to linear programs , 1958 .

[40]  Norbert Eisinger What You Always Wanted to Know About Clause Graph Resolution , 1986, CADE.

[41]  Jack Minker,et al.  Logic and Data Bases , 1978, Springer US.

[42]  W. Quine The two dogmas of empiricism , 1951 .

[43]  Paul D. Seymour,et al.  Decomposition of regular matroids , 1980, J. Comb. Theory, Ser. B.

[44]  Nripendra N. Biswas,et al.  Minimization of Boolean Functions , 1971, IEEE Transactions on Computers.

[45]  Willard Van Orman Quine,et al.  The Problem of Simplifying Truth Functions , 1952 .

[46]  E. Balas,et al.  Canonical Cuts on the Unit Hypercube , 1972 .

[47]  J. Edmonds,et al.  A Combinatorial Decomposition Theory , 1980, Canadian Journal of Mathematics.

[48]  Jinchang Wang,et al.  Dynamic Programming, Integral Polyhedra and Horn Clause Knowledge Base , 1989, INFORMS J. Comput..

[49]  David A. Plaisted Complete Problems in the First-Order Predicate Calculus , 1984, J. Comput. Syst. Sci..

[50]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[51]  P. Camion Characterization of totally unimodular matrices , 1965 .

[52]  Stephen A. Cook,et al.  The Relative Efficiency of Propositional Proof Systems , 1979, Journal of Symbolic Logic.

[53]  Donald W. Loveland,et al.  Automated theorem proving: a logical basis , 1978, Fundamental studies in computer science.

[54]  William J. Cook,et al.  On the complexity of cutting-plane proofs , 1987, Discret. Appl. Math..

[55]  S. G. Axline,et al.  An artificial intelligence program to advise physicians regarding antimicrobial therapy. , 1973, Computers and biomedical research, an international journal.

[56]  Pierre Hansen,et al.  A linear expected-time algorithm for deriving all logical conclusions implied by a set of boolean inequalities , 1986, Math. Program..

[57]  Willard Van Orman Quine,et al.  Word and Object , 1960 .

[58]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[59]  Atle Selberg An Elementary Proof of the Prime-Number Theorem for Arithmetic Progressions , 1950 .

[60]  S. Haack Philosophy of logics , 1978 .

[61]  William Kneale,et al.  The development of logic , 1963 .

[62]  Robert A. Kowalski,et al.  A Proof Procedure Using Connection Graphs , 1975, JACM.

[63]  J. Hooker Resolution vs. cutting plane solution of inference problems: Some computational experience , 1988 .

[64]  L. Wos,et al.  The unit preference strategy in theorem proving , 1899, AFIPS '64 (Fall, part I).

[65]  Jack Minker,et al.  Logic and Databases: A Deductive Approach , 1984, CSUR.

[66]  L. Wittgenstein Tractatus Logico-Philosophicus , 2021, Nordic Wittgenstein Review.

[67]  Martha Kneale,et al.  The development of logic , 1963 .

[68]  John V. Franco,et al.  On the Probabilistic Performance of Algorithms for the Satisfiability Problem , 1986, Inf. Process. Lett..

[69]  W. W. Bledsoe,et al.  Non-Resolution Theorem Proving , 1977, Artif. Intell..

[70]  Frederick Hayes-Roth,et al.  Building expert systems , 1983, Advanced book program.

[71]  Mauricio G. C. Resende,et al.  An implementation of Karmarkar's algorithm for linear programming , 1989, Math. Program..

[72]  John P. McDermott,et al.  R1: A Rule-Based Configurer of Computer Systems , 1982, Artif. Intell..

[73]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[74]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[75]  Alasdair Urquhart,et al.  Formal Languages]: Mathematical Logic--mechanical theorem proving , 2022 .

[76]  J. Shearer,et al.  Prime Implicants, Minimum Covers, and the Complexity of Logic Simplification , 1986, IEEE Transactions on Computers.

[77]  John P. McDermott,et al.  R1 Revisited: Four Years in the Trenches , 1984, AI Mag..