Effective entity matching with transformers

[1]  Francesco Guerra,et al.  Landmark Explanation: An Explainer for Entity Matching Models , 2021, CIKM.

[2]  C. Bizer,et al.  Cross-Language Learning for Product Matching , 2021, WWW.

[3]  Zhengjie Miao,et al.  Rotom: A Meta-Learned Data Augmentation Framework for Entity Matching, Data Cleaning, Text Classification, and Beyond , 2021, SIGMOD Conference.

[4]  Bing Li,et al.  Improving the Efficiency and Effectiveness for BERT-based Entity Resolution , 2021, AAAI.

[5]  Jinfeng Li,et al.  Deep Entity Matching , 2021, ACM J. Data Inf. Qual..

[6]  H. V. Jagadish,et al.  Responsible data management , 2020, Proc. VLDB Endow..

[7]  W. Tan,et al.  Deep entity matching with pre-trained language models , 2020, Proc. VLDB Endow..

[8]  Prithviraj Sen,et al.  A Comprehensive Benchmark Framework for Active Learning Methods in Entity Matching , 2020, SIGMOD Conference.

[9]  Yuliang Li,et al.  Snippext: Semi-supervised Opinion Mining with Augmented Data , 2020, WWW.

[10]  Prithviraj Sen,et al.  Learning-Based Methods with Human-in-the-Loop for Entity Resolution , 2019, CIKM.

[11]  Omer Levy,et al.  BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension , 2019, ACL.

[12]  Lysandre Debut,et al.  HuggingFace's Transformers: State-of-the-art Natural Language Processing , 2019, ArXiv.

[13]  Saravanan Thirumuruganathan,et al.  ZeroER: Entity Resolution using Zero Labeled Examples , 2019, SIGMOD Conference.

[14]  Xianpei Han,et al.  End-to-End Multi-Perspective Matching for Entity Resolution , 2019, IJCAI.

[15]  Yixin Cao,et al.  KGAT: Knowledge Graph Attention Network for Recommendation , 2019, KDD.

[16]  George Papadakis,et al.  Blocking and Filtering Techniques for Entity Resolution , 2019, ACM Comput. Surv..

[17]  Yeye He,et al.  Auto-EM: End-to-end Fuzzy Entity-Matching using Pre-trained Deep Models and Transfer Learning , 2019, WWW.

[18]  Christian Bizer,et al.  The WDC Training Dataset and Gold Standard for Large-Scale Product Matching , 2019, WWW.

[19]  Theodoros Rekatsinas,et al.  Deep Learning for Entity Matching: A Design Space Exploration , 2018, SIGMOD Conference.

[20]  Yue Wang,et al.  Transform-Data-by-Example (TDE): Extensible Data Transformation in Excel , 2018, SIGMOD Conference.

[21]  Prithviraj Sen,et al.  Active Learning for Large-Scale Entity Resolution , 2017, CIKM.

[22]  Tomas Mikolov,et al.  Enriching Word Vectors with Subword Information , 2016, TACL.

[23]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[24]  Qing Wang,et al.  A Clustering-Based Framework to Control Block Sizes for Entity Resolution , 2015, KDD.

[25]  Ahmed K. Elmagarmid,et al.  NADEEF/ER: generic and interactive entity resolution , 2014, SIGMOD Conference.

[26]  Jeffrey F. Naughton,et al.  Corleone: hands-off crowdsourcing for entity matching , 2014, SIGMOD Conference.

[27]  Anirban Dasgupta,et al.  Optimal hashing schemes for entity matching , 2013, WWW.

[28]  David R. Karger,et al.  Human-powered Sorts and Joins , 2011, Proc. VLDB Endow..

[29]  Jeffrey Xu Yu,et al.  Efficient similarity joins for near-duplicate detection , 2011, TODS.

[30]  Raymond J. Mooney,et al.  Adaptive duplicate detection using learnable string similarity measures , 2003, KDD '03.

[31]  Anuradha Bhamidipaty,et al.  Interactive deduplication using active learning , 2002, KDD.

[32]  William W. Cohen,et al.  Learning to match and cluster large high-dimensional data sets for data integration , 2002, KDD.

[33]  S. Hochreiter,et al.  Long Short-Term Memory , 1997, Neural Computation.