Faster than classical quantum algorithm for dense formulas of exact satisfiability and occupation problems

We present an exact quantum algorithm for solving the Exact Satisfiability (XSAT) problem, which belongs to the important NP-complete complexity class. The algorithm is based on an intuitive approach that can be divided into two parts: First, the identification and efficient characterization of a restricted subspace that contains all the valid assignments of the XSAT; Second, a quantum search in such restricted subspace. The quantum algorithm can be used either to find a valid assignment (or to certify that no solution exists) or to count the total number of valid assignments. The query complexities for the worst-case are respectively bounded by $O(\sqrt{2^{n-M^{\prime}}})$ and $O(2^{n-M^{\prime}})$, where $n$ is the number of variables and $M^{\prime}$ the number of linearly independent clauses. Remarkably, the proposed quantum algorithm results to be faster than any known exact classical algorithm to solve dense formulas of XSAT. As a concrete application, we provide the worst-case complexity for the Hamiltonian cycle problem obtained after mapping it to a suitable XSAT. Specifically, we show that the time complexity for the proposed quantum algorithm is bounded by $O(2^{n/4})$ for 3-regular undirected graphs, where $n$ is the number of nodes. The same worst-case complexity holds for $(3,3)$-regular bipartite graphs (the current best classical algorithm has a (worst-case) running time bounded by $O(2^{31n/96})$). Finally, when compared to heuristic techniques for XSAT, the proposed quantum algorithm is faster than the classical WalkSAT and Adiabatic Quantum Optimization for random instances with a density of constraints close to the satisfiability threshold, the regime in which instances are typically the hardest to solve. The proposed quantum algorithm can be also extended to the generalized version of the XSAT known as Occupation problem.

[1]  Michel X. Goemans,et al.  Proceedings of the thirty-fifth annual ACM symposium on Theory of computing , 2003, STOC 2003.

[2]  Peter van Beek,et al.  Backtracking Search Algorithms , 2006, Handbook of Constraint Programming.

[3]  Minghao Yin,et al.  The Worst-Case Upper Bound for Exact 3-Satisfiability with the Number of Clauses as the Parameter , 2012, FAW-AAIM.

[4]  S. R. Golwala,et al.  Combined limits on WIMPs from the CDMS and EDELWEISS experiments , 2011, 1105.3377.

[5]  Toby Walsh,et al.  Handbook of Constraint Programming , 2006, Handbook of Constraint Programming.

[6]  Costas S. Iliopoulos,et al.  Symposium on Theoretical Aspects of Computer Science , 2008 .

[7]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[8]  Eliezer L. Lozinskii,et al.  The Good Old Davis-Putnam Procedure Helps Counting Models , 2011, J. Artif. Intell. Res..

[9]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[10]  A. S. Kulikov An upper bound O(20.16254n) for exact 3-satisfiability: a simpler proof , 2005 .

[11]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[12]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[13]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[14]  David Saad,et al.  Properties of sparse random matrices over finite fields , 2009 .

[15]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[16]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[17]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[18]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[19]  Weihua Su,et al.  New Worst-Case upper Bound for Counting Exact Satisfiability , 2014, Int. J. Found. Comput. Sci..

[20]  Dan Roth,et al.  On the Hardness of Approximate Reasoning , 1993, IJCAI.

[21]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[22]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[23]  Jeffrey D. Ullman,et al.  Proceedings of the third annual ACM symposium on Theory of computing , 1971 .

[24]  Urvashi Sarkar BRICS , 2014 .

[25]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[26]  K. K. Nambiar,et al.  Foundations of Computer Science , 2001, Lecture Notes in Computer Science.

[27]  Biao Wu,et al.  Frontiers in Algorithmics and Algorithmic Aspects in Information and Management , 2012, Lecture Notes in Computer Science.

[28]  Philip M. Morse,et al.  Methods of Operations Research , 1952 .

[29]  Itay Hen,et al.  Exponential Complexity of the Quantum Adiabatic Algorithm for certain Satisfiability Problems , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Gian Giacomo Guerreschi,et al.  Adiabatic quantum optimization in the presence of discrete noise: Reducing the problem dimensionality , 2014, 1407.8183.

[31]  Gerhard J. Woeginger,et al.  Automata, Languages and Programming , 2003, Lecture Notes in Computer Science.

[32]  Richard J. Lipton,et al.  Proceedings of the tenth annual ACM symposium on Theory of computing , 1978 .

[33]  Adi Shamir,et al.  A T=O(2n/2), S=O(2n/4) Algorithm for Certain NP-Complete Problems , 1981, SIAM J. Comput..

[34]  N. Cerf,et al.  Quantum search by local adiabatic evolution , 2001, quant-ph/0107015.

[35]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[36]  Andris Ambainis,et al.  Quantum walk algorithm for element distinctness , 2003, 45th Annual IEEE Symposium on Foundations of Computer Science.

[37]  Gary L. Miller,et al.  Proceedings of the twenty-eighth annual ACM symposium on Theory of computing , 1996, STOC 1996.

[38]  Masahito Hayashi,et al.  Introduction to Quantum Information Science , 2014 .

[39]  Bolette Ammitzbøll Jurik,et al.  New algorithms for Exact Satisfiability , 2003, Theor. Comput. Sci..

[40]  M. Szegedy,et al.  Quantum Walk Based Search Algorithms , 2008, TAMC.

[41]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[42]  Marco Guidetti,et al.  Complexity of several constraint satisfaction problems using the heuristic, classical, algorithm, WalkSAT , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Ashley Montanaro,et al.  Quantum Pattern Matching Fast on Average , 2014, Algorithmica.

[44]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[45]  Stefan Porschen,et al.  Exact 3-satisfiability is decidable in time O(20.16254n) , 2005, Annals of Mathematics and Artificial Intelligence.

[46]  Andrea Montanari,et al.  Gibbs states and the set of solutions of random constraint satisfaction problems , 2006, Proceedings of the National Academy of Sciences.

[47]  G. Guerreschi,et al.  Boson sampling for molecular vibronic spectra , 2014, Nature Photonics.

[48]  Lenka Zdeborová,et al.  Locked constraint satisfaction problems. , 2008, Physical review letters.

[49]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[50]  Barry C. Sanders,et al.  Generalized Multiphoton Quantum Interference , 2014, 1403.3433.

[51]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[52]  R. Lathe Phd by thesis , 1988, Nature.

[53]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[54]  Andris Ambainis,et al.  Quantum search algorithms , 2004, SIGA.

[55]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[56]  Poland ÃLódź,et al.  International Journal of Foundations of Computer Science c ○ World Scientific Publishing Company EFFICIENT ALGORITHMS FOR (δ, γ, α) AND , 2008 .

[57]  Lenka Zdeborová,et al.  Constraint satisfaction problems with isolated solutions are hard , 2008, ArXiv.

[58]  Lance Fortnow,et al.  Proceedings of the forty-third annual ACM symposium on Theory of computing , 2011, STOC 2011.

[59]  Kazuo Iwama,et al.  An Improved Exact Algorithm for Cubic Graph TSP , 2007, COCOON.

[60]  Daniel Gooch,et al.  Communications of the ACM , 2011, XRDS.

[61]  Physical Review , 1965, Nature.

[62]  Gilles Brassard,et al.  Quantum Counting , 1998, ICALP.

[63]  October I Physical Review Letters , 2022 .

[64]  S. WEINTROUB,et al.  Progress in Physics , 1955, Nature.

[65]  Edward Farhi,et al.  Analog analogue of a digital quantum computation , 1996 .

[66]  A. Young,et al.  Size dependence of the minimum excitation gap in the quantum adiabatic algorithm. , 2008, Physical review letters.

[67]  J. M. BoardmanAbstract,et al.  Contemporary Mathematics , 2007 .

[68]  Klaus Sutner,et al.  On σ-Automata , 1988, Complex Syst..

[69]  D Saad,et al.  Typical kernel size and number of sparse random matrices over Galois fields: a statistical physics approach. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[70]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[71]  David Eppstein,et al.  The Traveling Salesman Problem for Cubic Graphs , 2003, J. Graph Algorithms Appl..

[72]  Stefan Porschen,et al.  Exact 3-Satisfiability Is Decidable in Time O (2 0.16254 n ) , 2005 .

[73]  Gilles Brassard,et al.  Tight bounds on quantum searching , 1996, quant-ph/9605034.

[74]  Peter Jonsson,et al.  Algorithms for four variants of the exact satisfiability problem , 2004, Theor. Comput. Sci..

[75]  Katherine D. Blake To San Francisco , 1911 .