Visual odometry aided by a sun sensor and inclinometer

In this paper, we present a novel approach to localization for planetary rovers, in which sun sensor and inclinometer measurements are incorporated directly into a stereo visual odometry pipeline. Utilizing the absolute orientation information provided by the sun sensor significantly reduces the error growth of the visual odometry path estimate. The measurements have minimal computation, power, and mass requirements, providing a localization improvement at nearly negligible cost. We describe the mathematical formulation of error terms for the stereo camera, sun sensor, and inclinometer measurements, as well as the bundle adjustment framework for determining the maximum likelihood vehicle transformation. Improved localization accuracy is demonstrated through extensive experimental results from a 10 kilometre traversal of a Mars analogue site on Devon Island in the Canadian High Arctic.

[1]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[2]  Timothy D. Barfoot,et al.  Visual teach and repeat for long-range rover autonomy , 2010 .

[3]  David Nistér,et al.  Preemptive RANSAC for live structure and motion estimation , 2005, Machine Vision and Applications.

[4]  Javier Ibanez Guzman,et al.  Accurate visual odometry from a rear parking camera , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[5]  Carl Christian Liebe,et al.  Sun sensing on the Mars exploration rovers , 2002, Proceedings, IEEE Aerospace Conference.

[6]  Tom Drummond,et al.  Machine Learning for High-Speed Corner Detection , 2006, ECCV.

[7]  Andrew Howard,et al.  Real-time stereo visual odometry for autonomous ground vehicles , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  John Enright,et al.  Devon Island as a Proving Ground for Planetary Rovers , 2010 .

[9]  Clark F. Olson,et al.  Rover navigation using stereo ego-motion , 2003, Robotics Auton. Syst..

[10]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[11]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[12]  Hans P. Moravec Obstacle avoidance and navigation in the real world by a seeing robot rover , 1980 .

[13]  Paul Timothy Furgale,et al.  Visual teach and repeat for long‐range rover autonomy , 2010, J. Field Robotics.

[14]  Larry H. Matthies,et al.  Two years of Visual Odometry on the Mars Exploration Rovers , 2007, J. Field Robotics.

[15]  Nathalie A. Cabrol,et al.  Haughton-Mars 97 -- I: Overview of Observations at the Haughton Impact Crater, a Unique Mars Analog Site in the Canadian High Arctic , 1998 .

[16]  Kurt Konolige,et al.  Large-Scale Visual Odometry for Rough Terrain , 2007, ISRR.

[17]  Timothy D. Barfoot,et al.  Long-range rover localization by matching LIDAR scans to orbital elevation maps , 2010 .

[18]  Brian H. Wilcox,et al.  Sojourner on Mars and Lessons Learned for Future Plantery Rovers , 1998 .

[19]  Larry H. Matthies,et al.  Error modeling in stereo navigation , 1986, IEEE J. Robotics Autom..

[20]  John Enright,et al.  The Devon Island rover navigation dataset , 2012, Int. J. Robotics Res..

[21]  M. J. Box Bias in Nonlinear Estimation , 1971 .

[22]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  John Enright,et al.  Algorithm Enhancements for the SS-411 Digital Sun Sensor , 2007 .

[24]  Richard Volpe Mars rover navigation results using sun sensor heading determination , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[25]  Kurt Konolige,et al.  Towards lifelong visual maps , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  John Enright,et al.  Sun sensing for planetary rover navigation , 2009, 2009 IEEE Aerospace conference.

[27]  Ian D. Reid,et al.  Vast-scale Outdoor Navigation Using Adaptive Relative Bundle Adjustment , 2010, Int. J. Robotics Res..

[28]  Larry H. Matthies,et al.  Rock modeling and matching for autonomous long‐range Mars rover localization , 2007, J. Field Robotics.

[29]  Larry H. Matthies,et al.  Stereo vision for planetary rovers: Stochastic modeling to near real-time implementation , 1991, Optics & Photonics.

[30]  Ian D. Reid,et al.  RSLAM: A System for Large-Scale Mapping in Constant-Time Using Stereo , 2011, International Journal of Computer Vision.

[31]  Larry Matthies,et al.  Two years of Visual Odometry on the Mars Exploration Rovers: Field Reports , 2007 .

[32]  J. F. Marr ANALYSIS OF HOPS OF THE 1987 CROP , 1986 .

[33]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[34]  Brett Kennedy,et al.  Design and analysis of a sun sensor for planetary rover absolute heading detection , 2001, IEEE Trans. Robotics Autom..

[35]  Andrew E. Johnson,et al.  Computer Vision on Mars , 2007, International Journal of Computer Vision.

[36]  Tom Drummond,et al.  Fusing points and lines for high performance tracking , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[37]  Gaurav S. Sukhatme,et al.  Bias Reduction and Filter Convergence for Long Range Stereo , 2005, ISRR.

[38]  John Enright,et al.  Sun Sensor Navigation for Planetary Rovers: Theory and Field Testing , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[39]  James R. Bergen,et al.  Visual odometry for ground vehicle applications , 2006, J. Field Robotics.

[40]  P. Hughes Spacecraft Attitude Dynamics , 1986 .

[41]  P. Furgale,et al.  Pose estimation using linearized rotations and quaternion algebra , 2011 .

[42]  Larry H. Matthies,et al.  Robust and Efficient Stereo Feature Tracking for Visual Odometry , 2008, 2008 IEEE International Conference on Robotics and Automation.

[43]  John Enright,et al.  Visual odometry aided by a sun sensor and inclinometer , 2011 .