Fitness Landscapes That Depend on Time

Landscapes whose fitness values change with time occur in several contexts. A first is that the evolutionary process takes place in a dynamic environment. Dynamics may be connected to optimization problems with changing objective functions, or generally that conditions apart from the genetic makeup of the population, but massively influencing the evolutionary outcome, are not constant. Mathematically, such dynamic fitness landscapes can be described either by static landscapes that are externally driven to change with time, or by spatially extended dynamical systems which internally and simultaneously define topology and dynamics of the landscape. Another setting for time-dependent fitness are coevolutionary processes where the fitness of a given individual depends on the fitness and the genotype of other individuals in a temporal or spatial fashion. This is known to create coupled, interactive, tunable or deformable landscapes. Such coevolutionary processes induce time-dependence that is population-based and produce landscapes that are codynamic. In this chapter we intend to give an unified overview about issues in and problems of time-dependent fitness landscapes and particularly highlight several types of mathematical descriptions and their properties, similarities and differences.

[1]  Richard K. Belew,et al.  New Methods for Competitive Coevolution , 1997, Evolutionary Computation.

[2]  Vladimir G Miranda,et al.  Numerical study of the Kardar-Parisi-Zhang equation. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Elena Popovici,et al.  Understanding Competitive Co-Evolutionary Dynamics via Fitness Landscapes , 2004, AAAI Technical Report.

[4]  Sean Luke,et al.  Archive-based cooperative coevolutionary algorithms , 2006, GECCO '06.

[5]  Marc Ebner,et al.  Coevolution and the Red Queen effect shape virtual plants , 2006, Genetic Programming and Evolvable Machines.

[6]  Enrique Alba,et al.  Measuring Fitness Degradation in Dynamic Optimization Problems , 2010, EvoApplications.

[7]  B. Hao,et al.  Directions in chaos , 1987 .

[8]  Hendrik Richter,et al.  A study of dynamic severity in chaotic fitness landscapes , 2005, 2005 IEEE Congress on Evolutionary Computation.

[9]  Hendrik Richter,et al.  Solving Dynamic Constrained Optimization Problems with Asynchronous Change Pattern , 2011, EvoApplications.

[10]  Hui Cheng,et al.  Multi-population Genetic Algorithms with Immigrants Scheme for Dynamic Shortest Path Routing Problems in Mobile Ad Hoc Networks , 2010, EvoApplications.

[11]  Juan Julián Merelo Guervós,et al.  Parallel Problem Solving from Nature - PPSN IX: 9th International Conference, Reykjavik, Iceland, September 9-13, 2006, Proceedings , 2006, PPSN.

[12]  Jano I. van Hemert,et al.  Dynamic Routing Problems with Fruitful Regions: Models and Evolutionary Computation , 2004, PPSN.

[13]  Anabela Simões,et al.  Evolutionary Algorithms for Dynamic Environments: Prediction Using Linear Regression and Markov Chains , 2008, PPSN.

[14]  Sean Luke,et al.  Time-dependent Collaboration Schemes for Cooperative Coevolutionary Algorithms , 2005, AAAI Fall Symposium: Coevolutionary and Coadaptive Systems.

[15]  Hendrik Richter,et al.  Evolutionary Optimization in Spatio-temporal Fitness Landscapes , 2006, PPSN.

[16]  Shengxiang Yang,et al.  Non-stationary problem optimization using the primal-dual genetic algorithm , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[17]  Jason M. Daida,et al.  (1+1) genetic algorithm fitness dynamics in a changing environment , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[18]  Larry Bull,et al.  Coevolutionary Species Adaptation Genetic Algorithms: A Continuing SAGA on Coupled Fitness Landscapes , 2005, ECAL.

[19]  B. Fernandez,et al.  Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems , 2008 .

[20]  Hendrik Richter Memory Design for Constrained Dynamic Optimization Problems , 2010, EvoApplications.

[21]  Thomas Jansen,et al.  The Cooperative Coevolutionary (11) EA , 2004, Evolutionary Computation.

[22]  Anabela Simões,et al.  Variable-Size Memory Evolutionary Algorithm to Deal with Dynamic Environments , 2009, EvoWorkshops.

[23]  Carlos Cruz,et al.  Optimization in dynamic environments: a survey on problems, methods and measures , 2011, Soft Comput..

[24]  Lauren Ancel Meyers,et al.  Fighting change with change: adaptive variation in an uncertain world , 2002 .

[25]  Edwin D. de Jong,et al.  The parallel Nash Memory for asymmetric games , 2006, GECCO.

[26]  J. Pollack,et al.  Coevolutionary dynamics in a minimal substrate , 2001 .

[27]  Xin Yao,et al.  Benchmarking and solving dynamic constrained problems , 2009, 2009 IEEE Congress on Evolutionary Computation.

[28]  Kenneth A. De Jong,et al.  Understanding cooperative co-evolutionary dynamics via simple fitness landscapes , 2005, GECCO '05.

[29]  Jürgen Branke,et al.  Memory enhanced evolutionary algorithms for changing optimization problems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[30]  S. Kauffman,et al.  Towards a general theory of adaptive walks on rugged landscapes. , 1987, Journal of theoretical biology.

[31]  Robert Kozma,et al.  Activation clustering in neural and social networks , 2005, Complex..

[32]  Richard A. Watson,et al.  Co-evolutionary dynamics on a deformable landscape , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[33]  Ernesto Costa,et al.  Multidimensional Knapsack Problem: A Fitness Landscape Analysis , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[34]  Doina Bucur,et al.  Influence Maximization in Social Networks with Genetic Algorithms , 2016, EvoApplications.

[35]  Adam Prügel-Bennett,et al.  Maximum Satisfiability: Anatomy of the Fitness Landscape for a Hard Combinatorial Optimization Problem , 2012, IEEE Transactions on Evolutionary Computation.

[36]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[37]  Ernesto Costa,et al.  A Particle Swarm Model of Organizational Adaptation , 2004, GECCO.

[38]  Wim Hordijk,et al.  Correlation analysis of coupled fitness landscapes , 2005, Complex..

[39]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[40]  Shengxiang Yang,et al.  Evolutionary dynamic optimization: A survey of the state of the art , 2012, Swarm Evol. Comput..

[41]  L. Kallel,et al.  Theoretical Aspects of Evolutionary Computing , 2001, Natural Computing Series.

[42]  S. Kauffman,et al.  Coevolution to the edge of chaos: coupled fitness landscapes, poised states, and coevolutionary avalanches. , 1991, Journal of theoretical biology.

[43]  Hendrik Richter,et al.  Coupled map lattices as spatio-temporal fitness functions: Landscape measures and evolutionary optimization , 2008 .

[44]  Zhang,et al.  Dynamic scaling of growing interfaces. , 1986, Physical review letters.

[45]  Xin Yao,et al.  Large scale evolutionary optimization using cooperative coevolution , 2008, Inf. Sci..

[46]  R.W. Morrison,et al.  A test problem generator for non-stationary environments , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[47]  David B. Fogel,et al.  Evolving neural networks to play checkers without relying on expert knowledge , 1999, IEEE Trans. Neural Networks.

[48]  Karsten Weicker,et al.  Performance Measures for Dynamic Environments , 2002, PPSN.

[49]  Kenneth A. De Jong,et al.  Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents , 2000, Evolutionary Computation.

[50]  Julian F. Miller,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[51]  Leticia F. Cugliandolo,et al.  From coupled map lattices to the stochastic Kardar-Parisi-Zhang equation , 2006 .

[52]  Shengxiang Yang,et al.  Evolutionary Computation in Dynamic and Uncertain Environments , 2007, Studies in Computational Intelligence.

[53]  Kunihiko Kaneko,et al.  Theory and Applications of Coupled Map Lattices , 1993 .

[54]  Peter Merz,et al.  Advanced Fitness Landscape Analysis and the Performance of Memetic Algorithms , 2004, Evolutionary Computation.

[55]  Grzegorz Rozenberg,et al.  Handbook of Natural Computing , 2011, Springer Berlin Heidelberg.

[56]  Wolfgang Banzhaf,et al.  Advances in Artificial Life , 2003, Lecture Notes in Computer Science.

[57]  G. Wagner,et al.  The topology of the possible: formal spaces underlying patterns of evolutionary change. , 2001, Journal of theoretical biology.

[58]  Peter A. N. Bosman,et al.  Computationally Intelligent Online Dynamic Vehicle Routing by Explicit Load Prediction in an Evolutionary Algorithm , 2006, PPSN.

[59]  C. Wilke,et al.  Adaptive walks on time-dependent fitness landscapes. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[60]  Erik D. Goodman,et al.  A Genetic Algorithm Approach to Dynamic Job Shop Scheduling Problem , 1997, ICGA.

[61]  Richard A. Watson,et al.  Coevolutionary Dynamics of Interacting Species , 2010, EvoApplications.

[62]  Hui Cheng,et al.  Genetic algorithms with immigrants schemes for dynamic multicast problems in mobile ad hoc networks , 2010, Eng. Appl. Artif. Intell..

[63]  Kunihiko Kaneko,et al.  Complex Systems: Chaos and Beyond , 2001 .

[64]  Christopher R. Stephens,et al.  Landscapes and Effective Fitness , 2003 .

[65]  Rolf Drechsler,et al.  Applications of Evolutionary Computing, EvoWorkshops 2008: EvoCOMNET, EvoFIN, EvoHOT, EvoIASP, EvoMUSART, EvoNUM, EvoSTOC, and EvoTransLog, Naples, Italy, March 26-28, 2008. Proceedings , 2008, EvoWorkshops.

[66]  Kay Chen Tan,et al.  A Competitive-Cooperative Coevolutionary Paradigm for Dynamic Multiobjective Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[67]  Hendrik Richter,et al.  Evolutionary Optimization and Dynamic Fitness Landscapes , 2010, Evolutionary Algorithms and Chaotic Systems.

[68]  Edwin D. de Jong,et al.  Ideal Evaluation from Coevolution , 2004, Evolutionary Computation.

[69]  C. Reeves,et al.  Properties of fitness functions and search landscapes , 2001 .

[70]  Xin Yao,et al.  Experimental study on population-based incremental learning algorithms for dynamic optimization problems , 2005, Soft Comput..

[71]  Simon M. Lucas,et al.  Parallel Problem Solving from Nature - PPSN X, 10th International Conference Dortmund, Germany, September 13-17, 2008, Proceedings , 2008, PPSN.

[72]  Peter A. N. Bosman Learning and Anticipation in Online Dynamic Optimization , 2007, Evolutionary Computation in Dynamic and Uncertain Environments.

[73]  Paul B Rainey,et al.  Antagonistic coevolution between a bacterium and a bacteriophage , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[74]  E. D. Weinberger,et al.  The NK model of rugged fitness landscapes and its application to maturation of the immune response. , 1989, Journal of theoretical biology.

[75]  Hendrik Richter Behavior of Evolutionary Algorithms in Chaotically Changing Fitness Landscapes , 2004, PPSN.

[76]  Shengxiang Yang,et al.  A self-organizing random immigrants genetic algorithm for dynamic optimization problems , 2007, Genetic Programming and Evolvable Machines.

[77]  Kenneth A. De Jong,et al.  The dynamics of the best individuals in co-evolution , 2006, Natural Computing.

[78]  Ivan Zelinka,et al.  Evolutionary Algorithms and Chaotic Systems , 2010, Evolutionary Algorithms and Chaotic Systems.

[79]  Shengxiang Yang,et al.  Learning behavior in abstract memory schemes for dynamic optimization problems , 2009, Soft Comput..

[80]  C. B. Yang,et al.  Scaling behavior of roughness in the two-dimensional Kardar–Parisi–Zhang growth , 2007 .

[81]  James P. Crutchfield,et al.  Phenomenology of Spatio-Temporal Chaos , 1987 .

[82]  Phil Husbands,et al.  Fitness Landscapes and Evolvability , 2002, Evolutionary Computation.

[83]  Shengxiang Yang,et al.  Memory Based on Abstraction for Dynamic Fitness Functions , 2008, EvoWorkshops.

[84]  Jordi Bascompte,et al.  Plant-Animal Mutualistic Networks: The Architecture of Biodiversity , 2007 .

[85]  Riccardo Poli,et al.  Genetic and Evolutionary Computation – GECCO 2004 , 2004, Lecture Notes in Computer Science.

[86]  Yoshiaki Katada,et al.  Tracking the Red Queen effect by estimating features of competitive co-evolutionary fitness landscapes , 2010, IEEE Congress on Evolutionary Computation.

[87]  Sean Luke,et al.  Selecting informative actions improves cooperative multiagent learning , 2006, AAMAS '06.

[88]  Edmund K. Burke,et al.  Parallel Problem Solving from Nature - PPSN IX: 9th International Conference, Reykjavik, Iceland, September 9-13, 2006, Proceedings , 2006, PPSN.

[89]  Uri Alon,et al.  Varying environments can speed up evolution , 2007, Proceedings of the National Academy of Sciences.

[90]  R.W. Morrison,et al.  Triggered hypermutation revisited , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[91]  Arvind S. Mohais,et al.  DynDE: a differential evolution for dynamic optimization problems , 2005, 2005 IEEE Congress on Evolutionary Computation.