Application of reduced models for robust control and state estimation of a distributed parameter system

Abstract This paper studies the application of reduced models of a distributed parameter system for robust process control and state estimation. We take the approach of integrating model reduction, parameter identification, and model uncertainty analysis, in purpose to find an appropriate trade-off between complexity and robust performance. The application example is the temperature system in a continuous paper pulp digester. Physical modeling of this process results in coupled linearized partial differential equations which are then reduced into low-order nominal process models using an orthogonal collocation approximation method. Two different approaches to obtaining a model uncertainty description are adapted for use on a distributed parameter system with low-order nominal model and shown to produce similar results when tested with measurement data. It is also demonstrated how this uncertainty description, in combination with the reduced model, may be used for robust control design and verification of the control performance on the distributed parameter system. Finally, the possibility of estimating the distributed process state using a state observer for the reduced process is demonstrated. Measurements of the process state in a certain position is available and is shown to agree with the estimated state at the same position.

[1]  Andrew G. Alleyne,et al.  Model-driven system identification of transcritical vapor compression systems , 2005, IEEE Transactions on Control Systems Technology.

[2]  R. B. Newell,et al.  Robust model-order reduction of complex biological processes , 2002 .

[3]  K. Glover,et al.  Robust stabilization of normalized coprime factor plant descriptions with H/sub infinity /-bounded uncertainty , 1989 .

[4]  Keith Glover,et al.  Robust control design using normal-ized coprime factor plant descriptions , 1989 .

[5]  Mario Sznaier,et al.  An LMI approach to control-oriented identification and model (In) validation of LPV systems , 2003, IEEE Trans. Autom. Control..

[6]  Francis J. Doyle,et al.  Fundamental thermal‐hydraulic pulp digester model with grade transition , 2003 .

[7]  Karlene A. Hoo,et al.  Low-order Control-relevant Models for A Class of Distributed Parameter Systems , 2001 .

[8]  Lennart Ljung,et al.  Model Validation and Model Error Modeling , 1999 .

[9]  Panagiotis D. Christofides,et al.  Optimal control of diffusion-convection-reaction processes using reduced-order models , 2008, Comput. Chem. Eng..

[10]  Laurent Simon,et al.  Application of orthogonal collocation and regression techniques for recovering parameters of a two-pathway transdermal drug-delivery model , 2007, Comput. Chem. Eng..

[11]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[12]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[13]  T. Damak Procedure for asymptotic state and parameter estimation of nonlinear distributed parameter bioreactors , 2007 .

[14]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[15]  Carl N. Nett,et al.  Control oriented system identification: a worst-case/deterministic approach in H/sub infinity / , 1991 .

[16]  Thomas Gustafsson,et al.  Model parameter estimation of simplified linear models for a continuous paper pulp digester , 2007 .

[17]  Panagiotis D. Christofides,et al.  Control of nonlinear distributed process systems : Recent developments and challenges , 2001 .

[18]  R. Chiang,et al.  Robust control toolbox , 1996 .

[19]  Panagiotis D. Christofides,et al.  Special volume on ‘control of distributed parameter systems’ , 2002 .

[20]  Karlene A. Hoo,et al.  System identification and model-based control for distributed parameter systems , 2004, Comput. Chem. Eng..

[21]  Lennart Ljung,et al.  Comparing different approaches to model error modeling in robust identification , 2002, Autom..

[22]  Khalid Alhumaizi,et al.  Numerical analysis of a reaction-diffusion-convection system , 2003, Comput. Chem. Eng..