Navigating the Neural Space in Search of the Neural Code

The advent of powerful perturbation tools, such as optogenetics, has created new frontiers for probing causal dependencies in neural and behavioral states. These approaches have significantly enhanced the ability to characterize the contribution of different cells and circuits to neural function in health and disease. They have shifted the emphasis of research toward causal interrogations and increased the demand for more precise and powerful tools to control and manipulate neural activity. Here, we clarify the conditions under which measurements and perturbations support causal inferences. We note that the brain functions at multiple scales and that causal dependencies may be best inferred with perturbation tools that interface with the system at the appropriate scale. Finally, we develop a geometric framework to facilitate the interpretation of causal experiments when brain perturbations do or do not respect the intrinsic patterns of brain activity. We describe the challenges and opportunities of applying perturbations in the presence of dynamics, and we close with a general perspective on navigating the activity space of neurons in the search for neural codes.

[1]  M. Jazayeri,et al.  Saccadic eye movements evoked by optogenetic activation of primate V 1 , 2012 .

[2]  R. Romo,et al.  Timing and neural encoding of somatosensory parametric working memory in macaque prefrontal cortex. , 2003, Cerebral cortex.

[3]  M. Shadlen,et al.  Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task , 2002, The Journal of Neuroscience.

[4]  U. Karmarkar,et al.  Timing in the Absence of Clocks: Encoding Time in Neural Network States , 2007, Neuron.

[5]  M. Graziano,et al.  Complex Movements Evoked by Microstimulation of Precentral Cortex , 2002, Neuron.

[6]  R. Vogels,et al.  Inferotemporal Cortex Subserves Three-Dimensional Structure Categorization , 2012, Neuron.

[7]  Karl Deisseroth,et al.  Optogenetics in Neural Systems , 2011, Neuron.

[8]  Nikos K. Logothetis,et al.  Cell-Targeted Optogenetics and Electrical Microstimulation Reveal the Primate Koniocellular Projection to Supra-granular Visual Cortex , 2016, Neuron.

[9]  Nicholas J. Priebe,et al.  Estimating Target Speed from the Population Response in Visual Area MT , 2004, The Journal of Neuroscience.

[10]  Xiao-Jing Wang,et al.  Cortico–basal ganglia circuit mechanism for a decision threshold in reaction time tasks , 2006, Nature Neuroscience.

[11]  David J. Freedman,et al.  Biased Associative Representations in Parietal Cortex , 2013, Neuron.

[12]  David D. Cox,et al.  Untangling invariant object recognition , 2007, Trends in Cognitive Sciences.

[13]  Anthony J. Movshon,et al.  Optimal representation of sensory information by neural populations , 2006, Nature Neuroscience.

[14]  M. Shadlen,et al.  Representation of Time by Neurons in the Posterior Parietal Cortex of the Macaque , 2003, Neuron.

[15]  John H R Maunsell,et al.  Cortical neural populations can guide behavior by integrating inputs linearly, independent of synchrony , 2013, Proceedings of the National Academy of Sciences.

[16]  William T. Newsome,et al.  Cortical microstimulation influences perceptual judgements of motion direction , 1990, Nature.

[17]  Hugo Merchant,et al.  Measuring time with different neural chronometers during a synchronization-continuation task , 2011, Proceedings of the National Academy of Sciences.

[18]  R. Kiani,et al.  Microstimulation of inferotemporal cortex influences face categorization , 2006, Nature.

[19]  K. Deisseroth,et al.  Optogenetic stimulation of a hippocampal engram activates fear memory recall , 2012, Nature.

[20]  M. Shadlen,et al.  A representation of the hazard rate of elapsed time in macaque area LIP , 2005, Nature Neuroscience.

[21]  R. Kerr,et al.  Discovery of Brainwide Neural-Behavioral Maps via Multiscale Unsupervised Structure Learning , 2014, Science.

[22]  W. Newsome,et al.  Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT. , 1986, Journal of neurophysiology.

[23]  K. Deisseroth,et al.  Molecular and Cellular Approaches for Diversifying and Extending Optogenetics , 2010, Cell.

[24]  W. Newsome,et al.  Context-dependent computation by recurrent dynamics in prefrontal cortex , 2013, Nature.

[25]  J. Sanes,et al.  Can molecules explain long-term potentiation? , 1999, Nature Neuroscience.

[26]  David Williams,et al.  Different sensations from cones with the same photopigment. , 2005, Journal of vision.

[27]  Juliana Y. Rhee,et al.  Acute off-target effects of neural circuit manipulations , 2015, Nature.

[28]  L. Weiskrantz Analysis of behavioral change , 1968 .

[29]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[30]  Kristina J. Nielsen,et al.  Targeting Single Neuronal Networks for Gene Expression and Cell Labeling In Vivo , 2010, Neuron.

[31]  R. Reid,et al.  Direct Activation of Sparse, Distributed Populations of Cortical Neurons by Electrical Microstimulation , 2009, Neuron.

[32]  Ilana B. Witten,et al.  Cholinergic Interneurons Control Local Circuit Activity and Cocaine Conditioning , 2010, Science.

[33]  Matthew T. Kaufman,et al.  Supplementary materials for : Cortical activity in the null space : permitting preparation without movement , 2014 .

[34]  Mehrdad Jazayeri,et al.  Representation of Accumulating Evidence for a Decision in Two Parietal Areas , 2015, The Journal of Neuroscience.

[35]  Naoshige Uchida,et al.  Author response: Demixed principal component analysis of neural population data , 2016 .

[36]  Lief E. Fenno,et al.  Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins , 2011, Nature Methods.

[37]  E. J. Tehovnik,et al.  Saccadic eye movements evoked by microstimulation of striate cortex , 2003, The European journal of neuroscience.

[38]  M. Fee,et al.  Using temperature to analyze temporal dynamics in the songbird motor pathway , 2008, Nature.

[39]  Shy Shoham,et al.  Identification of network-level coding units for real-time representation of episodic experiences in the hippocampus , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Markus Siegel,et al.  Cortical information flow during flexible sensorimotor decisions , 2015, Science.

[41]  Josiah R. Boivin,et al.  A Causal Link Between Prediction Errors, Dopamine Neurons and Learning , 2013, Nature Neuroscience.

[42]  Bingni W. Brunton,et al.  Distinct relationships of parietal and prefrontal cortices to evidence accumulation , 2014, Nature.

[43]  Matthew T. Kaufman,et al.  Neural population dynamics during reaching , 2012, Nature.

[44]  G. Laurent,et al.  Odor encoding as an active, dynamical process: experiments, computation, and theory. , 2001, Annual review of neuroscience.

[45]  A. Nobre,et al.  Time in Cortical Circuits , 2015, The Journal of Neuroscience.

[46]  Stefan R. Pulver,et al.  Independent Optical Excitation of Distinct Neural Populations , 2014, Nature Methods.

[47]  A. Georgopoulos,et al.  Neurophysiology of perceptual and motor aspects of interception. , 2006, Journal of neurophysiology.

[48]  Christopher D. Harvey,et al.  Choice-specific sequences in parietal cortex during a virtual-navigation decision task , 2012, Nature.

[49]  Alexander S. Ecker,et al.  Population code in mouse V1 facilitates read-out of natural scenes through increased sparseness , 2014, Nature Neuroscience.

[50]  Michael N. Shadlen,et al.  A Neural Mechanism for Sensing and Reproducing a Time Interval , 2015, Current Biology.

[51]  K. Tye,et al.  From circuits to behaviour in the amygdala , 2015, Nature.

[52]  Jack A. Wells,et al.  fMRI response to blue light delivery in the naïve brain: Implications for combined optogenetic fMRI studies , 2013, NeuroImage.

[53]  Byron M. Yu,et al.  Neural constraints on learning , 2014, Nature.

[54]  A. Leonardo,et al.  Ensemble Coding of Vocal Control in Birdsong , 2005, The Journal of Neuroscience.

[55]  Wei Ji Ma,et al.  Bayesian inference with probabilistic population codes , 2006, Nature Neuroscience.

[56]  A. Zador,et al.  Corticostriatal neurones in auditory cortex drive decisions during auditory discrimination , 2013, Nature.

[57]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[58]  A. Georgopoulos Population activity in the control of movement. , 1994, International review of neurobiology.

[59]  E. Wagenmakers A practical solution to the pervasive problems ofp values , 2007, Psychonomic bulletin & review.

[60]  H. Gastaut,et al.  Epilepsy and the functional anatomy of the human brain , 1954 .

[61]  Hugo Merchant,et al.  Neural basis of the perception and estimation of time. , 2013, Annual review of neuroscience.

[62]  Matthew T. Kaufman,et al.  A category-free neural population supports evolving demands during decision-making , 2014, Nature Neuroscience.

[63]  Byron M. Yu,et al.  Dimensionality reduction for large-scale neural recordings , 2014, Nature Neuroscience.

[64]  P. Tse,et al.  Time and the Brain: How Subjective Time Relates to Neural Time , 2005 .

[65]  Eero P. Simoncelli,et al.  How MT cells analyze the motion of visual patterns , 2006, Nature Neuroscience.

[66]  H. Jasper,et al.  Epilepsy and the functional anatomy of the human brain , 1985 .

[67]  Ralf M. Haefner,et al.  A Modality-Specific Feedforward Component of Choice-Related Activity in MT , 2015, Neuron.

[68]  J. Gold,et al.  The Neurophysiology of Decision Making as a Window on Cognition , 2003 .

[69]  E. J. Tehovnik,et al.  Mapping Cortical Activity Elicited with Electrical Microstimulation Using fMRI in the Macaque , 2005, Neuron.

[70]  J. Barry Richmond,et al.  Neural Coding , 2014, Encyclopedia of Computational Neuroscience.

[71]  E. J. Tehovnik,et al.  Direct and indirect activation of cortical neurons by electrical microstimulation. , 2006, Journal of neurophysiology.

[72]  K. D. Punta,et al.  An ultra-sparse code underlies the generation of neural sequences in a songbird , 2002 .

[73]  Richard H. R. Hahnloser,et al.  erratum: An ultra-sparse code underlies the generation of neural sequences in a songbird , 2003, Nature.

[74]  J. Maunsell,et al.  Attention improves performance primarily by reducing interneuronal correlations , 2009, Nature Neuroscience.

[75]  Karl Deisseroth,et al.  Color-tuned Channelrhodopsins for Multiwavelength Optogenetics , 2012, The Journal of Biological Chemistry.

[76]  Ehud Zohary,et al.  Correlated neuronal discharge rate and its implications for psychophysical performance , 1994, Nature.

[77]  Xiao-Jing Wang,et al.  The importance of mixed selectivity in complex cognitive tasks , 2013, Nature.

[78]  D. Robinson Eye movements evoked by collicular stimulation in the alert monkey. , 1972, Vision research.

[79]  K. Miller,et al.  One-Dimensional Dynamics of Attention and Decision Making in LIP , 2008, Neuron.

[80]  Amy M. Ni,et al.  Insights into cortical mechanisms of behavior from microstimulation experiments , 2013, Progress in Neurobiology.

[81]  J. DiCarlo,et al.  Optogenetic and pharmacological suppression of spatial clusters of face neurons reveal their causal role in face gender discrimination , 2015, Proceedings of the National Academy of Sciences.

[82]  J. Movshon,et al.  A computational analysis of the relationship between neuronal and behavioral responses to visual motion , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[83]  Feng Zhang,et al.  An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology , 2007, Journal of neural engineering.

[84]  L. Miller,et al.  Primary motor cortical neurons encode functional muscle synergies , 2002, Experimental Brain Research.

[85]  Nuo Li,et al.  Robust neuronal dynamics in premotor cortex during motor planning , 2016, Nature.

[86]  Lief E. Fenno,et al.  Amygdala circuitry mediating reversible and bidirectional control of anxiety , 2011, Nature.

[87]  E. Miller,et al.  Response to Comment on "Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices" , 2007, Science.

[88]  G. Brindley,et al.  The sensations produced by electrical stimulation of the visual cortex , 1968, The Journal of physiology.

[89]  R. Romo,et al.  Somatosensory discrimination based on cortical microstimulation , 1998, Nature.

[90]  P. Cisek,et al.  Deliberation and Commitment in the Premotor and Primary Motor Cortex during Dynamic Decision Making , 2014, Neuron.

[91]  Edward S Boyden,et al.  Programmable RNA-binding protein composed of repeats of a single modular unit , 2016, Proceedings of the National Academy of Sciences.

[92]  R. Andersen,et al.  Electrical microstimulation distinguishes distinct saccade-related areas in the posterior parietal cortex. , 1998, Journal of neurophysiology.

[93]  O. Yizhar,et al.  Biophysical constraints of optogenetic inhibition at presynaptic terminals , 2016, Nature Neuroscience.

[94]  Mehrdad Jazayeri,et al.  Saccadic eye movements evoked by optogenetic activation of primate V1 , 2012, Nature Neuroscience.

[95]  A. Fuchs,et al.  Eye movements evoked by stimulation of frontal eye fields. , 1969, Journal of neurophysiology.

[96]  Katherine M. Armstrong,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2003, Nature.