Functional clustering of dendritic activity during decision-making

The active properties of dendrites support local nonlinear operations, but previous imaging and electrophysiological measurements have produced conflicting views regarding the prevalence of local nonlinearities in vivo. We imaged calcium signals in pyramidal cell dendrites in the motor cortex of mice performing a tactile decision task. A custom microscope allowed us to image the soma and up to 300 μm of contiguous dendrite at 15 Hz, while resolving individual spines. New analysis methods were used to estimate the frequency and spatial scales of activity in dendritic branches and spines. The majority of dendritic calcium transients were coincident with global events. However, task-associated calcium signals in dendrites and spines were compartmentalized by dendritic branching and clustered within branches over approximately 10 μm. Diverse behavior-related signals were intermingled and distributed throughout the dendritic arbor, potentially supporting a large computational repertoire and learning capacity in individual neurons.

[1]  E. Kandel,et al.  ELECTROPHYSIOLOGY OF HIPPOCAMPAL NEURONS: IV. FAST PREPOTENTIALS. , 1961, Journal of neurophysiology.

[2]  J Rinzel,et al.  Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. , 1973, Biophysical journal.

[3]  T. Poggio,et al.  Retinal ganglion cells: a functional interpretation of dendritic morphology. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[4]  T. Poggio,et al.  Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[5]  H. Wigström,et al.  Hippocampal long-term potentiation is induced by pairing single afferent volleys with intracellularly injected depolarizing current pulses. , 1986, Acta physiologica Scandinavica.

[6]  G. Shepherd,et al.  Logic operations are properties of computer-simulated interactions between excitable dendritic spines , 1987, Neuroscience.

[7]  D. Tank,et al.  Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. , 1988, Science.

[8]  D. Tank,et al.  Optical imaging of calcium accumulation in hippocampal pyramidal cells during synaptic activation , 1989, Nature.

[9]  Christopher M. Bishop,et al.  Advances in Neural Information Processing Systems 8 (NIPS 1995) , 1991 .

[10]  W. N. Ross,et al.  The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons , 1992, Nature.

[11]  Bartlett W. Mel NMDA-Based Pattern Discrimination in a Modeled Cortical Neuron , 1992, Neural Computation.

[12]  P. Demoly,et al.  [Transgenic mice]. , 1992, Annales de dermatologie et de venereologie.

[13]  B. Connors,et al.  Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  C. Koch,et al.  Amplification and linearization of distal synaptic input to cortical pyramidal cells. , 1994, Journal of neurophysiology.

[15]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[16]  K. Svoboda,et al.  Photon Upmanship: Why Multiphoton Imaging Is More than a Gimmick , 1997, Neuron.

[17]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[18]  B. Sakmann,et al.  Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[19]  D. Kleinfeld,et al.  In vivo dendritic calcium dynamics in neocortical pyramidal neurons , 1997, Nature.

[20]  D. Clapham,et al.  NMDA receptors amplify calcium influx into dendritic spines during associative pre- and postsynaptic activation , 1998, Nature Neuroscience.

[21]  W. Snider How do you feel? Neurotrophins and mechanotransduction , 1998, Nature Neuroscience.

[22]  Nace L. Golding,et al.  Dendritic Sodium Spikes Are Variable Triggers of Axonal Action Potentials in Hippocampal CA1 Pyramidal Neurons , 1998, Neuron.

[23]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[24]  R. Yuste,et al.  Linear Summation of Excitatory Inputs by CA1 Pyramidal Neurons , 1999, Neuron.

[25]  Roberto Malinow,et al.  Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated , 1999, Nature.

[26]  X. Wang,et al.  Synaptic Basis of Cortical Persistent Activity: the Importance of NMDA Receptors to Working Memory , 1999, The Journal of Neuroscience.

[27]  Winfried Denk,et al.  Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo , 1999, Nature Neuroscience.

[28]  D. Tank,et al.  In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons , 1999, Nature Neuroscience.

[29]  B. Sakmann,et al.  Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[31]  Bartlett W. Mel,et al.  A model for intradendritic computation of binocular disparity , 2000, Nature Neuroscience.

[32]  J. Kao,et al.  Compartmentalized and Binary Behavior of Terminal Dendrites in Hippocampal Pyramidal Neurons , 2001, Science.

[33]  M. Häusser,et al.  Dendritic coincidence detection of EPSPs and action potentials , 2001, Nature Neuroscience.

[34]  Bartlett W. Mel,et al.  Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue , 2001, Neuron.

[35]  N. Higham Computing the nearest correlation matrix—a problem from finance , 2002 .

[36]  Nace L. Golding,et al.  Dendritic spikes as a mechanism for cooperative long-term potentiation , 2002, Nature.

[37]  A. Polsky,et al.  Submillisecond Precision of the Input-Output Transformation Function Mediated by Fast Sodium Dendritic Spikes in Basal Dendrites of CA1 Pyramidal Neurons , 2003, The Journal of Neuroscience.

[38]  Bartlett W. Mel,et al.  Pyramidal Neuron as Two-Layer Neural Network , 2003, Neuron.

[39]  Bert Sakmann,et al.  Supralinear Ca2+ Influx into Dendritic Tufts of Layer 2/3 Neocortical Pyramidal Neurons In Vitro and In Vivo , 2003, The Journal of Neuroscience.

[40]  J. Magee,et al.  On the Initiation and Propagation of Dendritic Spikes in CA1 Pyramidal Neurons , 2004, The Journal of Neuroscience.

[41]  F. Helmchen,et al.  Boosting of Action Potential Backpropagation by Neocortical Network Activity In Vivo , 2004, The Journal of Neuroscience.

[42]  Daniel Johnston,et al.  LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites , 2004, Nature Neuroscience.

[43]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[44]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[45]  S. Antic,et al.  Initiation of Sodium Spikelets in Basal Dendrites of Neocortical Pyramidal Neurons , 2005, The Journal of Membrane Biology.

[46]  Rick Trebino,et al.  Extremely simple single-prism ultrashort- pulse compressor. , 2006, Optics express.

[47]  K. Svoboda,et al.  Spine growth precedes synapse formation in the adult neocortex in vivo , 2006, Nature Neuroscience.

[48]  J. Magee,et al.  Integrative Properties of Radial Oblique Dendrites in Hippocampal CA1 Pyramidal Neurons , 2006, Neuron.

[49]  Karel Svoboda,et al.  Locally dynamic synaptic learning rules in pyramidal neuron dendrites , 2007, Nature.

[50]  Thomas K. Berger,et al.  Combined voltage and calcium epifluorescence imaging in vitro and in vivo reveals subthreshold and suprathreshold dynamics of mouse barrel cortex. , 2007, Journal of neurophysiology.

[51]  Srdjan D Antic,et al.  Voltage and calcium transients in basal dendrites of the rat prefrontal cortex , 2007, The Journal of physiology.

[52]  A. Polsky,et al.  Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study , 2007, Nature Neuroscience.

[53]  Judit K. Makara,et al.  Compartmentalized dendritic plasticity and input feature storage in neurons , 2008, Nature.

[54]  Karel Svoboda,et al.  The Spread of Ras Activity Triggered by Activation of a Single Dendritic Spine , 2008, Science.

[55]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[56]  T. Wilson,et al.  An optical technique for remote focusing in microscopy , 2008 .

[57]  I. Parmryd,et al.  Replicate‐based noise corrected correlation for accurate measurements of colocalization , 2008, Journal of microscopy.

[58]  Jackie Schiller,et al.  Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. , 2008, Journal of neurophysiology.

[59]  Jozsef Csicsvari,et al.  Activity-Dependent Control of Neuronal Output by Local and Global Dendritic Spike Attenuation , 2009, Neuron.

[60]  Bartlett W. Mel,et al.  Capacity-Enhancing Synaptic Learning Rules in a Medial Temporal Lobe Online Learning Model , 2009, Neuron.

[61]  Bartlett W. Mel,et al.  Encoding and Decoding Bursts by NMDA Spikes in Basal Dendrites of Layer 5 Pyramidal Neurons , 2009, The Journal of Neuroscience.

[62]  W. Gan,et al.  Stably maintained dendritic spines are associated with lifelong memories , 2009, Nature.

[63]  A. Polsky,et al.  Synaptic Integration in Tuft Dendrites of Layer 5 Pyramidal Neurons: A New Unifying Principle , 2009, Science.

[64]  Alexander S. Ecker,et al.  Generating Spike Trains with Specified Correlation Coefficients , 2009, Neural Computation.

[65]  Rafael Yuste,et al.  Fast nonnegative deconvolution for spike train inference from population calcium imaging. , 2009, Journal of neurophysiology.

[66]  M. Häusser,et al.  Dendritic Discrimination of Temporal Input Sequences in Cortical Neurons , 2010, Science.

[67]  Nathalie L Rochefort,et al.  Dendritic organization of sensory input to cortical neurons in vivo , 2010, Nature.

[68]  R. Reid,et al.  Frontiers in Cellular Neuroscience Cellular Neuroscience Methods Article , 2022 .

[69]  Wen-Liang L Zhou,et al.  The decade of the dendritic NMDA spike , 2010, Journal of neuroscience research.

[70]  Karel Svoboda,et al.  Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice , 2010, Nature.

[71]  M. Häusser,et al.  Synaptic Integration Gradients in Single Cortical Pyramidal Cell Dendrites , 2011, Neuron.

[72]  Ryohei Yasuda,et al.  Local, persistent activation of Rho GTPases during plasticity of single dendritic spines , 2011, Nature.

[73]  M. Cohen,et al.  Measuring and interpreting neuronal correlations , 2011, Nature Neuroscience.

[74]  Nathalie L Rochefort,et al.  Functional mapping of single spines in cortical neurons in vivo , 2011, Nature.

[75]  Bert Sakmann,et al.  Dendritic coding of multiple sensory inputs in single cortical neurons in vivo , 2011, Proceedings of the National Academy of Sciences.

[76]  Slawomir J. Nasuto,et al.  Neuromantic – from Semi-Manual to Semi-Automatic Reconstruction of Neuron Morphology , 2012, Front. Neuroinform..

[77]  Mark T. Harnett,et al.  Nonlinear dendritic integration of sensory and motor input during an active sensing task , 2012, Nature.

[78]  Ju Lu,et al.  REPETITIVE MOTOR LEARNING INDUCES COORDINATED FORMATION OF CLUSTERED DENDRITIC SPINES IN VIVO , 2012, Nature.

[79]  O. Paulsen,et al.  Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates , 2012, Proceedings of the National Academy of Sciences.

[80]  P. Kara,et al.  Strategies for mapping synaptic inputs on dendrites in vivo by combining two-photon microscopy, sharp intracellular recording, and pharmacology , 2012, Front. Neural Circuits.

[81]  Nelson Spruston,et al.  Synaptic amplification by dendritic spines enhances input cooperativity , 2012, Nature.

[82]  Idan Segev,et al.  Principles Governing the Operation of Synaptic Inhibition in Dendrites , 2012, Neuron.

[83]  Jackie Schiller,et al.  Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo , 2012, Nature.

[84]  Spencer L. Smith,et al.  Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo , 2013, Nature.

[85]  J. Schiller,et al.  Active properties of neocortical pyramidal neuron dendrites. , 2013, Annual review of neuroscience.

[86]  A high throughput (>90%), large compensation range, single-prism femtosecond pulse compressor , 2013, 1306.5011.

[87]  Daniel N Hill,et al.  Multibranch activity in basal and tuft dendrites during firing of layer 5 cortical neurons in vivo , 2013, Proceedings of the National Academy of Sciences.

[88]  Luis Ibáñez,et al.  The Design of SimpleITK , 2013, Front. Neuroinform..

[89]  Bartlett W. Mel,et al.  Mechanisms underlying subunit independence in pyramidal neuron dendrites , 2013, Proceedings of the National Academy of Sciences.

[90]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[91]  C. Gerfen,et al.  GENSAT BAC Cre-Recombinase Driver Lines to Study the Functional Organization of Cerebral Cortical and Basal Ganglia Circuits , 2013, Neuron.

[92]  Mark T. Harnett,et al.  Potassium Channels Control the Interaction between Active Dendritic Integration Compartments in Layer 5 Cortical Pyramidal Neurons , 2013, Neuron.

[93]  M. Larkum,et al.  NMDA spikes enhance action potential generation during sensory input , 2014, Nature Neuroscience.

[94]  Joseph J. Marlin,et al.  GABA-A Receptor Inhibition of Local Calcium Signaling in Spines and Dendrites , 2014, The Journal of Neuroscience.

[95]  W. Senn,et al.  Learning by the Dendritic Prediction of Somatic Spiking , 2014, Neuron.

[96]  Zengcai V. Guo,et al.  Procedures for Behavioral Experiments in Head-Fixed Mice , 2014, PloS one.

[97]  Zengcai V. Guo,et al.  Flow of Cortical Activity Underlying a Tactile Decision in Mice , 2014, Neuron.

[98]  Nelson Spruston,et al.  Dendritic integration: 60 years of progress , 2015, Nature Neuroscience.

[99]  A. Clark,et al.  On the functions, mechanisms, and malfunctions of intracortical contextual modulation , 2015, Neuroscience & Biobehavioral Reviews.

[100]  William R. Gray Roncal,et al.  Saturated Reconstruction of a Volume of Neocortex , 2015, Cell.

[101]  Daniel A. Dombeck,et al.  Calcium transient prevalence across the dendritic arbor predicts place field properties , 2014, Nature.

[102]  Boris S. Gutkin,et al.  Contribution of sublinear and supralinear dendritic integration to neuronal computations , 2015, Front. Cell. Neurosci..

[103]  Nathan C. Klapoetke,et al.  Transgenic Mice for Intersectional Targeting of Neural Sensors and Effectors with High Specificity and Performance , 2015, Neuron.

[104]  Ryohei Yasuda,et al.  Biochemical Computation for Spine Structural Plasticity , 2015, Neuron.

[105]  Tobias Bonhoeffer,et al.  Precision of Inhibition: Dendritic Inhibition by Individual GABAergic Synapses on Hippocampal Pyramidal Cells Is Confined in Space and Time , 2015, Neuron.

[106]  Takaki Komiyama,et al.  Subtype-specific plasticity of inhibitory circuits in motor cortex during motor learning , 2015, Nature Neuroscience.

[107]  Christian Lohmann,et al.  Spontaneous Activity Drives Local Synaptic Plasticity In Vivo , 2015, Neuron.

[108]  W. Gan,et al.  Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity , 2015, Nature.

[109]  K. Svoboda,et al.  A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging , 2016, bioRxiv.

[110]  Pál Maák,et al.  Fast 3D Imaging of Spine, Dendritic, and Neuronal Assemblies in Behaving Animals , 2016, Neuron.

[111]  Pál Maák,et al.  Fast 3D Imaging of Spine, Dendritic, and Neuronal Assemblies in Behaving Animals. , 2016, Neuron.

[112]  Jean-Philippe Thivierge,et al.  Correlated Synaptic Inputs Drive Dendritic Calcium Amplification and Cooperative Plasticity during Clustered Synapse Development , 2016, Neuron.

[113]  David Pfau,et al.  Simultaneous Denoising, Deconvolution, and Demixing of Calcium Imaging Data , 2016, Neuron.

[114]  Mark S. Cembrowski,et al.  Structured Dendritic Inhibition Supports Branch-Selective Integration in CA1 Pyramidal Cells , 2016, Neuron.

[115]  Nuo Li,et al.  Robust neuronal dynamics in premotor cortex during motor planning , 2016, Nature.

[116]  David E. Whitney,et al.  Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex , 2016, Nature Neuroscience.

[117]  Geoffrey J Evans,et al.  Random-access scanning microscopy for 3D imaging in awake behaving animals , 2016, Nature Methods.

[118]  M. Larkum,et al.  Active cortical dendrites modulate perception , 2016, Science.

[119]  Johannes Heberle,et al.  Electro-optic and acousto-optic laser beam scanners , 2016, SPIE LASE.

[120]  Bertalan K. Andrásfalvy,et al.  Location-dependent synaptic plasticity rules by dendritic spine cooperativity , 2016, Nature Communications.

[121]  F. Helmchen,et al.  Dendritic NMDA spikes are necessary for timing-dependent associative LTP in CA3 pyramidal cells , 2016, Nature Communications.

[122]  Ziv Yaniv,et al.  SimpleITK Image-Analysis Notebooks: a Collaborative Environment for Education and Reproducible Research , 2017, Journal of Digital Imaging.

[123]  Sonja B. Hofer,et al.  Synaptic organization of visual space in primary visual cortex , 2017, Nature.

[124]  Zengcai V. Guo,et al.  Maintenance of persistent activity in a frontal thalamocortical loop , 2017, Nature.

[125]  David Fitzpatrick,et al.  Local Order within Global Disorder: Synaptic Architecture of Visual Space , 2017, Neuron.

[126]  Tsai-Wen Chen,et al.  A Map of Anticipatory Activity in Mouse Motor Cortex , 2017, Neuron.

[127]  Timothy P Lillicrap,et al.  Towards deep learning with segregated dendrites , 2016, eLife.

[128]  Na Ji Video-rate Volumetric Functional Imaging of the Brain at Synaptic Resolution , 2017 .

[129]  Elina A K Jacobs,et al.  Aberrant Cortical Activity in Multiple GCaMP6-Expressing Transgenic Mouse Lines , 2017, eNeuro.

[130]  Johannes D. Seelig,et al.  Video-rate volumetric functional imaging of the brain at synaptic resolution , 2016, Nature Neuroscience.

[131]  Michael N. Economo,et al.  A cortico-cerebellar loop for motor planning , 2018, Nature.

[132]  Judit K. Makara,et al.  Global and Multiplexed Dendritic Computations under In Vivo-like Conditions , 2018, Neuron.

[133]  Karel Svoboda,et al.  Kilohertz frame-rate two-photon tomography , 2018, bioRxiv.

[134]  Mark S. Cembrowski,et al.  Single excitatory axons form clustered synapses onto CA1 pyramidal cell dendrites , 2018, Nature Neuroscience.

[135]  Sandro Romani,et al.  Discrete attractor dynamics underlies persistent activity in the frontal cortex , 2019, Nature.