Approximate Nash Equilibria under Stability Conditions

[1]  Amin Saberi,et al.  Approximating nash equilibria using small-support strategies , 2007, EC '07.

[2]  The complexity of computing a Nash equilibrium , 2009, CACM.

[3]  Xiaotie Deng,et al.  Settling the Complexity of Two-Player Nash Equilibrium , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[4]  Maria-Florina Balcan,et al.  Approximate clustering without the approximation , 2009, SODA.

[5]  Maria-Florina Balcan,et al.  Agnostic Clustering , 2009, ALT.

[6]  Xiaotie Deng,et al.  Settling the complexity of computing two-player Nash equilibria , 2007, JACM.

[7]  Santosh S. Vempala,et al.  Nash equilibria in random games , 2007, Random Struct. Algorithms.

[8]  Evangelos Markakis,et al.  New algorithms for approximate Nash equilibria in bimatrix games , 2007, Theor. Comput. Sci..

[9]  J. Nash,et al.  NON-COOPERATIVE GAMES , 1951, Classics in Game Theory.

[10]  Paul G. Spirakis,et al.  An Optimization Approach for Approximate Nash Equilibria , 2007, WINE.

[11]  Avrim Blum,et al.  Stability Yields a PTAS for k-Median and k-Means Clustering , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[12]  Aranyak Mehta,et al.  Progress in approximate nash equilibria , 2007, EC '07.

[13]  Daniel M. Kane,et al.  On the complexity of two-player win-lose games , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[14]  Mark Braverman,et al.  Finding Low Error Clusterings , 2009, COLT.

[15]  Aranyak Mehta,et al.  Playing large games using simple strategies , 2003, EC '03.

[16]  Avrim Blum,et al.  Center-based clustering under perturbation stability , 2010, Inf. Process. Lett..