Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality

We study the convergence properties of an alternating proximal minimization algorithm for nonconvex structured functions of the type: L(x,y)=f(x)+Q(x,y)+g(y), where f and g are proper lower semicontinuous functions, defined on Euclidean spaces, and Q is a smooth function that couples the variables x and y. The algorithm can be viewed as a proximal regularization of the usual Gauss-Seidel method to minimize L. We work in a nonconvex setting, just assuming that the function L satisfies the Kurdyka-Łojasiewicz inequality. An entire section illustrates the relevancy of such an assumption by giving examples ranging from semialgebraic geometry to “metrically regular” problems. Our main result can be stated as follows: If L has the Kurdyka-Łojasiewicz property, then each bounded sequence generated by the algorithm converges to a critical point of L. This result is completed by the study of the convergence rate of the algorithm, which depends on the geometrical properties of the function L around its critical points. When specialized to $Q(x,y)=\Vert x-y \Vert ^2$ and to f, g indicator functions, the algorithm is an alternating projection mehod (a variant of von Neumann's) that converges for a wide class of sets including semialgebraic and tame sets, transverse smooth manifolds or sets with “regular” intersection. To illustrate our results with concrete problems, we provide a convergent proximal reweighted l1 algorithm for compressive sensing and an application to rank reduction problems.

[1]  R. Smullyan ANNALS OF MATHEMATICS STUDIES , 1961 .

[2]  A. Auslender Optimisation : méthodes numériques , 1976 .

[3]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .

[4]  J. Risler,et al.  Real algebraic and semi-algebraic sets , 1990 .

[5]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[6]  S. Łojasiewicz Sur la géométrie semi- et sous- analytique , 1993 .

[7]  B. Widrow,et al.  Adaptive inverse control , 1987, Proceedings of 8th IEEE International Symposium on Intelligent Control.

[8]  Patrick L. Combettes,et al.  Signal recovery by best feasible approximation , 1993, IEEE Trans. Image Process..

[9]  A. Wilkie Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function , 1996 .

[10]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..

[11]  A. Gabrielov Complements of subanalytic sets and existential formulas for analytic functions , 1996 .

[12]  M. Shiota Geometry of subanalytic and semialgebraic sets , 1997 .

[13]  L. van den Dries,et al.  Tame Topology and O-minimal Structures , 1998 .

[14]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[15]  K. Kurdyka On gradients of functions definable in o-minimal structures , 1998 .

[16]  Александр Давидович Иоффе,et al.  Метрическая регулярность и субдифференциальное исчисление@@@Metric regularity and subdifferential calculus , 2000 .

[17]  A. Ioffe Metric regularity and subdifferential calculus , 2000 .

[18]  A. Wilkie TAME TOPOLOGY AND O-MINIMAL STRUCTURES (London Mathematical Society Lecture Note Series 248) By L OU VAN DEN D RIES : 180 pp., £24.95 (US$39.95, LMS Members' price £18.70), ISBN 0 521 59838 9 (Cambridge University Press, 1998). , 2000 .

[19]  F. Deutsch Best approximation in inner product spaces , 2001 .

[20]  P. Tseng Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization , 2001 .

[21]  Yair Censor,et al.  Proximity Function Minimization Using Multiple Bregman Projections, with Applications to Split Feasibility and Kullback–Leibler Distance Minimization , 2001, Ann. Oper. Res..

[22]  Alfredo N. Iusem,et al.  Inexact Variants of the Proximal Point Algorithm without Monotonicity , 2002, SIAM J. Optim..

[23]  Patrick L. Combettes,et al.  Proximal Methods for Cohypomonotone Operators , 2004, SIAM J. Control. Optim..

[24]  Igor Grubisic,et al.  Efficient Rank Reduction of Correlation Matrices , 2004, cond-mat/0403477.

[25]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[26]  Heinz H. Bauschke,et al.  Joint minimization with alternating Bregman proximity operators , 2005 .

[27]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[28]  Robert E. Mahony,et al.  Convergence of the Iterates of Descent Methods for Analytic Cost Functions , 2005, SIAM J. Optim..

[29]  F. Giannessi Variational Analysis and Generalized Differentiation , 2006 .

[30]  A. Lewis,et al.  A nonsmooth Morse–Sard theorem for subanalytic functions , 2006, Journal of Mathematical Analysis and Applications.

[31]  A. Dontchev,et al.  Convergence of the proximal point method for metrically regular mappings , 2007 .

[32]  Adrian S. Lewis,et al.  The [barred L]ojasiewicz Inequality for Nonsmooth Subanalytic Functions with Applications to Subgradient Dynamical Systems , 2006, SIAM J. Optim..

[33]  Patrick Redont,et al.  A New Class of Alternating Proximal Minimization Algorithms with Costs-to-Move , 2007, SIAM J. Optim..

[34]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[35]  Adrian S. Lewis,et al.  Clarke Subgradients of Stratifiable Functions , 2006, SIAM J. Optim..

[36]  J. Bolte,et al.  Alternating Proximal Algorithms for Weakly Coupled Minimization Problems. Applications to Dynamical Games and PDE’s , 2008 .

[37]  D. Russell Luke,et al.  Finding Best Approximation Pairs Relative to a Convex and Prox-Regular Set in a Hilbert Space , 2008, SIAM J. Optim..

[38]  Charles Steinhorn,et al.  Tame Topology and O-Minimal Structures , 2008 .

[39]  Adrian S. Lewis,et al.  Alternating Projections on Manifolds , 2008, Math. Oper. Res..

[40]  J. Bolte,et al.  Characterizations of Lojasiewicz inequalities and applications , 2008, 0802.0826.

[41]  J. Bolte,et al.  Characterizations of Lojasiewicz inequalities: Subgradient flows, talweg, convexity , 2009 .

[42]  Hédy Attouch,et al.  On the convergence of the proximal algorithm for nonsmooth functions involving analytic features , 2008, Math. Program..

[43]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[44]  Warren Hare,et al.  Computing proximal points of nonconvex functions , 2008, Math. Program..

[45]  Adrian S. Lewis,et al.  Local Linear Convergence for Alternating and Averaged Nonconvex Projections , 2009, Found. Comput. Math..

[46]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..