Characterization and recognition of generalized clique-Helly graphs
暂无分享,去创建一个
Jayme Luiz Szwarcfiter | Mitre Costa Dourado | Fábio Protti | M. C. Dourado | F. Protti | J. Szwarcfiter
[1] Zsolt Tuza,et al. Extremal bi-Helly families , 2000, Discret. Math..
[2] Paul L. Butzer,et al. Eduard Helly (1884–1943), in memoriam , 1984 .
[3] Jayme Luiz Szwarcfiter,et al. Clique-inverse graphs of K3-free and K4-free graphs , 2000, J. Graph Theory.
[4] Claude Berge,et al. Graphs and Hypergraphs , 2021, Clustering.
[5] Stephen A. Cook,et al. The complexity of theorem-proving procedures , 1971, STOC.
[6] Martin Charles Golumbic,et al. The edge intersection graphs of paths in a tree , 1985, J. Comb. Theory, Ser. B.
[7] Michael O. Albertson,et al. Duality and perfection for edges in cliques , 1984, J. Comb. Theory, Ser. B.
[8] Vitaly I. Voloshin,et al. On the upper chromatic number of a hypergraph , 1995, Australas. J Comb..
[9] A. Brandstädt,et al. Graph Classes: A Survey , 1987 .
[10] Jayme Luiz Szwarcfiter,et al. Recognizing Clique-Helly Graphs , 1997, Ars Comb..
[11] Jayme Luiz Szwarcfiter,et al. Clique-inverse graphs of K 3 -free and K 4 -free graphs , 2000 .
[12] V. Klee,et al. Helly's theorem and its relatives , 1963 .