Integration of local and global geometrical cues for 3D face recognition

We present a unified feature representation of 2.5D pointclouds and apply it to face recognition. The representation integrates local and global geometrical cues in a single compact representation which makes matching a probe to a large database computationally efficient. The global cues provide geometrical coherence for the local cues resulting in better descriptiveness of the unified representation. Multiple rank-0 tensors (scalar features) are computed at each point from its local neighborhood and from the global structure of the 2.5D pointcloud, forming multiple rank-0 tensor fields. The pointcloud is then represented by the multiple rank-0 tensor fields which are invariant to rigid transformations. Each local tensor field is integrated with every global field in a 2D histogram which is indexed by a local field in one dimension and a global field in the other dimension. Finally, PCA coefficients of the 2D histograms are concatenated into a single feature vector. The representation was tested on FRGC V2.0 data set and achieved 93.78% identification and 95.37% verification rate at 0.1% FAR.

[1]  Gordon Erlebacher,et al.  A novel technique for face recognition using range imaging , 2003, Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings..

[2]  Gérard G. Medioni,et al.  Object modeling by registration of multiple range images , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[3]  Tieniu Tan,et al.  Automatic 3D face recognition combining global geometric features with local shape variation information , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[4]  Mohamed Daoudi,et al.  A practical approach for 3D model indexing by combining local and global invariants , 2002, Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission.

[5]  Michael A. Greenspan,et al.  Efficient and reliable template set matching for 3D object recognition , 1999, Second International Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062).

[6]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[7]  Arun Ross,et al.  Multimodal biometrics: An overview , 2004, 2004 12th European Signal Processing Conference.

[8]  Anil K. Jain,et al.  Matching 2.5D face scans to 3D models , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  David Gelperin,et al.  The optimality of A , 1988 .

[10]  Mohammed Bennamoun,et al.  Automatic 3D Face Detection, Normalization and Recognition , 2006, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06).

[11]  Faisal R. Al-Osaimi,et al.  3D shape representation by fusing local and global information , 2007, 2007 9th International Symposium on Signal Processing and Its Applications.

[12]  Heinrich H. Bülthoff,et al.  Categorization of natural scenes: local vs. global information , 2006, APGV '06.

[13]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Christopher M. Brown,et al.  Some Mathematical and Representational Aspects of Solid Modeling , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Arun Ross,et al.  Information fusion in biometrics , 2003, Pattern Recognit. Lett..

[16]  Paul Dierckx,et al.  Curve and surface fitting with splines , 1994, Monographs on numerical analysis.

[17]  Patrick J. Flynn,et al.  A Survey Of Free-Form Object Representation and Recognition Techniques , 2001, Comput. Vis. Image Underst..

[18]  David G. Stork,et al.  Pattern Classification , 1973 .

[19]  Ren C. Luo,et al.  Multisensor fusion and integration: approaches, applications, and future research directions , 2002 .

[20]  Ronen Basri,et al.  Recognition by Linear Combinations of Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  J. Heinbockel Introduction to Tensor Calculus and Continuum Mechanics , 2001 .

[22]  I. Jolliffe Principal Component Analysis , 2002 .

[23]  Yunde Jia Description and recognition of curved objects , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol. III. Conference C: Image, Speech and Signal Analysis,.

[24]  Jaechang Shim,et al.  3D Face Recognition using Statistical Multiple Features for the Local Depth Information , 2003 .

[25]  Berk Gökberk,et al.  Rank-based decision fusion for 3D shape-based face recognition , 2005, Proceedings of the IEEE 13th Signal Processing and Communications Applications Conference, 2005..

[26]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[27]  Patrick J. Flynn,et al.  Overview of the face recognition grand challenge , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[28]  Mohammed Bennamoun,et al.  Three-Dimensional Model-Based Object Recognition and Segmentation in Cluttered Scenes , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Mohammed Bennamoun,et al.  Representation and Recognition of 3D Free-Form Objects , 2002, Digit. Signal Process..

[30]  Gérard G. Medioni,et al.  Object modelling by registration of multiple range images , 1992, Image Vis. Comput..

[31]  IEEE conference on computer vision and pattern recognition , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[32]  Andrea J. van Doorn,et al.  Surface shape and curvature scales , 1992, Image Vis. Comput..

[33]  Katsushi Ikeuchi,et al.  The Complex EGI: A New Representation for 3-D Pose Determination , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Pierre Kornprobst,et al.  Tracking segmented objects using tensor voting , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[35]  P. Krsek Algorithms for Computing Curvatures from Range Data , 2001 .

[36]  Patrick J. Flynn,et al.  A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition , 2006, Comput. Vis. Image Underst..

[37]  Mubarak Shah,et al.  Multi-sensor fusion: a perspective , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[38]  José F. Vélez,et al.  Face recognition using 3D surface extracted descriptors , 2003 .

[39]  Ruzena Bajcsy,et al.  Spline Representations in 3-D Vision , 1994, Object Representation in Computer Vision.

[40]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Chi-Keung Tang,et al.  A Computational Framework for Feature Extraction and Segmentation , 2000 .

[42]  Mi-Suen Lee,et al.  A Computational Framework for Segmentation and Grouping , 2000 .

[43]  Gérard G. Medioni,et al.  Curvature-Augmented Tensor Voting for Shape Inference from Noisy 3D Data , 2002, IEEE Trans. Pattern Anal. Mach. Intell..