Approximate Bayes learning of stochastic differential equations.

We introduce a nonparametric approach for estimating drift and diffusion functions in systems of stochastic differential equations from observations of the state vector. Gaussian processes are used as flexible models for these functions, and estimates are calculated directly from dense data sets using Gaussian process regression. We develop an approximate expectation maximization algorithm to deal with the unobserved, latent dynamics between sparse observations. The posterior over states is approximated by a piecewise linearized process of the Ornstein-Uhlenbeck type and the maximum a posteriori estimation of the drift is facilitated by a sparse Gaussian process approximation.

[1]  J Schwander,et al.  High-resolution record of Northern Hemisphere climate extending into the last interglacial period , 2004, Nature.

[2]  G. Roberts,et al.  Nonparametric estimation of diffusions: a differential equations approach , 2012 .

[3]  Dan Cornford,et al.  Variational mean-field algorithm for efficient inference in large systems of stochastic differential equations. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Lehel Csató,et al.  Sparse On-Line Gaussian Processes , 2002, Neural Computation.

[5]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[6]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[7]  I. Sgouralis,et al.  ICON: An Adaptation of Infinite HMMs for Time Traces with Drift. , 2016, Biophysical journal.

[8]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[9]  Peter C. B. Phillips,et al.  Fully Nonparametric Estimation of Scalar Diffusion Models , 2001 .

[10]  Darren J. Wilkinson,et al.  Markov Chain Monte Carlo Algorithms for SDE Parameter Estimation , 2010, Learning and Inference in Computational Systems Biology.

[11]  Frank Noé,et al.  Bayesian framework for modeling diffusion processes with nonlinear drift based on nonlinear and incomplete observations. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Ioannis Sgouralis,et al.  An Introduction to Infinite HMMs for Single-Molecule Data Analysis. , 2016, Biophysical journal.

[13]  Dan Cornford,et al.  Variational Inference for Diffusion Processes , 2007, NIPS.

[14]  North Greenland Ice Core Project members High-resolution record of Northern Hemisphere climate extending into the last interglacial period , 2004 .

[15]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[16]  Gerrit Lohmann,et al.  Deriving dynamical models from paleoclimatic records: application to glacial millennial-scale climate variability. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[18]  D. Oliver,et al.  Markov chain Monte Carlo methods for conditioning a permeability field to pressure data , 1997 .

[19]  Ole Winther,et al.  TAP Gibbs Free Energy, Belief Propagation and Sparsity , 2001, NIPS.

[20]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .

[21]  Andreas Ruttor,et al.  Approximate Gaussian process inference for the drift function in stochastic differential equations , 2013, NIPS.

[22]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[23]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[24]  Frank Kwasniok,et al.  Analysis and modelling of glacial climate transitions using simple dynamical systems , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  H. Kappen Linear theory for control of nonlinear stochastic systems. , 2004, Physical review letters.

[26]  J. Jouzel,et al.  Evidence for general instability of past climate from a 250-kyr ice-core record , 1993, Nature.

[27]  Harry van Zanten,et al.  Reversible jump MCMC for nonparametric drift estimation for diffusion processes , 2012, Comput. Stat. Data Anal..

[28]  M. Hooten,et al.  A general science-based framework for dynamical spatio-temporal models , 2010 .

[29]  A. Gallant,et al.  Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes , 2002 .

[30]  Jordan Stoyanov,et al.  Simulation and Inference for Stochastic Differential Equations: with R Examples , 2011 .

[31]  A. M. Stuart,et al.  Posterior consistency via precision operators for Bayesian nonparametric drift estimation in SDEs , 2012, 1202.0976.

[32]  Carl E. Rasmussen,et al.  Gaussian process dynamic programming , 2009, Neurocomputing.

[33]  M. Opper,et al.  Variational estimation of the drift for stochastic differential equations from the empirical density , 2016, 1603.01159.

[34]  S. Lade Finite sampling interval effects in Kramers-Moyal analysis , 2009, 0905.4324.

[35]  Herbert A. Sturges,et al.  The Choice of a Class Interval , 1926 .