Errors-in-variables identification using maximum likelihood estimation in the frequency domain

This paper deals with the identification of errors-in-variables (EIV) models corrupted by additive and uncorrelated white Gaussian noises when the noise-free input is an arbitrary signal, not required to be periodic. In particular, a frequency domain maximum likelihood (ML) estimator is proposed and analyzed in some detail. As some other EIV estimators, this method assumes that the ratio of the noise variances is known. The estimation problem is formulated in the frequency domain. It is shown that the parameter estimates are consistent. An explicit algorithm for computing the asymptotic covariance matrix of the parameter estimates is derived. The possibility to effectively use lowpass filtered data by using only part of the frequency domain is discussed, analyzed and illustrated.

[1]  Umberto Soverini,et al.  Maximum likelihood identification of noisy input-output models , 2007, Autom..

[2]  Umberto Soverini,et al.  The Frisch scheme in algebraic and dynamic identification problems , 2008, Kybernetika.

[3]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[4]  J. Cadzow,et al.  Algebraic approach to system identification , 1986, IEEE Trans. Acoust. Speech Signal Process..

[5]  Torsten Söderström,et al.  A covariance matching approach for identifying errors-in-variables systems , 2009, Autom..

[6]  Torsten Söderström,et al.  A generalized instrumental variable estimation method for errors-in-variables identification problems , 2011, Autom..

[7]  Rik Pintelon,et al.  Frequency domain maximum likelihood estimation of linear dynamic errors-in-variables models , 2007, Autom..

[8]  Sabine Van Huffel Introduction to total least squares techniques and errors-in-variables modeling , 1997 .

[9]  Rik Pintelon,et al.  Errors-in-variables identification of dynamic systems excited by arbitrary non-white input , 2013, Autom..

[10]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[11]  Torsten Söderström,et al.  Identification of stochastic linear systems in presence of input noise , 1981, Autom..

[12]  T. Söderström ERRORS-IN-VARIABLES METHODS IN SYSTEM IDENTIFICATION , 2006 .

[13]  Graham C. Goodwin,et al.  On the equivalence of time and frequency domain maximum likelihood estimation , 2010, Autom..

[14]  D. V. Lindley,et al.  Regression Lines and the Linear Functional Relationship , 1947 .

[15]  Torsten Söderström,et al.  Accuracy analysis of a covariance matching approach for identifying errors-in-variables systems , 2011, Autom..

[16]  J. Schoukens,et al.  Frequency domain system identification using arbitrary signals , 1997, IEEE Trans. Autom. Control..

[17]  S. Huffel,et al.  Total Least Squares and Errors-in-Variables Modeling : Analysis, Algorithms and Applications , 2002 .

[18]  Torsten Söderström,et al.  Frequency domain maximum likelihood identification of noisy input–output models , 2014 .

[19]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.

[20]  T. McKelvey Frequency domain identification methods , 2002 .

[21]  K. Fernando,et al.  Identification of linear systems with input and output noise: the Koopmans-Levin method , 1985 .

[22]  Gerd Vandersteen,et al.  Frequency-domain system identification using non-parametric noise models estimated from a small number of data sets , 1997, Autom..

[23]  Torsten Söderström System identification for the errors-in-variables problem , 2010 .

[24]  T. Söderström Discrete-Time Stochastic Systems: Estimation and Control , 1995 .

[25]  Torsten Söderström,et al.  Perspectives on errors-in-variables estimation for dynamic systems , 2002, Signal Process..