Linkages Passive and Active Modules

Self-reconfiguring robots are modular robot systems that are physically connected and capable of making different geometric structures. Most current research in this field is focused on homogeneous systems in which all the modules are identical. In this article, we explore the concept of self-assembling robot systems consisting of passive structural modules plus active robotic modules. We study a special class of heterogeneous self-reconfiguring robots we call active linkages. The robots in this class comprise two types of modules: passive structural bars, which may either be fixed in the world or free to move individually, and mobile active 2 and 3 degrees-of-freedom (DoF) modules with rotating grippers, which may pick up or climb on the passive modules, organize and hold them in a desired shape, and actively move them for self-assembly, self-reconfiguration, or selfrepair purposes. The passive modules can be passed around by the active modules and coordinate to form the skeleton of a large class of truss and linkage geometries. Figures 1 and 2 show a simulation of a self-assembling active tower belonging to this class. So far, we have manually fabricated the passive bars or used existing structures, but we predict that the absolute simplicity in form and function of this class of passive modules will ultimately enable on-demand manufacture in situ from elements present (or intentionally placed) in the local environment of the deployed system. Figures 3 and 4 show fixed and mobile active modules, respectively.

[1]  Pradeep K. Khosla,et al.  A Modular Self-Reconfigurable Bipartite Robotic System: Implementation and Motion Planning , 2001, Auton. Robots.

[2]  Howie Choset,et al.  Dynamic Ambiguities in Frictional Rigid-body Systems with Application to Climbing via Bracing , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[3]  Craig D. McGray,et al.  The self-reconfiguring robotic molecule: design and control algorithms , 1998 .

[4]  Zahurin Samad,et al.  Development of a low-cost modular pole climbing robot , 2000, 2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.00CH37119).

[5]  Tanio K. Tanev,et al.  Kinematics of a hybrid (parallel-serial) robot manipulator , 2000 .

[6]  Mark H. Yim,et al.  Evolution of PolyBot: A Modular Reconfigurable Robot , 2002 .

[7]  Ian Gibson,et al.  Trigon Robotic Pairs , 2006 .

[8]  Eiichi Yoshida,et al.  A 3-D self-reconfigurable structure , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[9]  Craig D. McGray,et al.  The self-reconfiguring robotic molecule , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[10]  Gregory S. Chirikjian,et al.  The kinematics of hyper-redundant robot locomotion , 1995, IEEE Trans. Robotics Autom..

[11]  Yangsheng Xu,et al.  Human-robot cooperation in space: SM2 for new space station structure , 1995, IEEE Robotics Autom. Mag..

[12]  Gregory S. Chirikjian,et al.  Self-replicating robots for lunar development , 2002 .

[13]  Roque J. Saltarén,et al.  Motion planning of a climbing parallel robot , 2003, IEEE Trans. Robotics Autom..

[14]  Sergei Vassilvitskii,et al.  On the general reconfiguration problem for expanding cube style modular robots , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[15]  Gregory S. Chirikjian,et al.  A new inverse kinematics algorithm for binary manipulators with many actuators , 2000 .

[16]  Wei-Min Shen,et al.  A system for in-space assembly , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[17]  Gregory S. Chirikjian,et al.  Useful metrics for modular robot motion planning , 1997, IEEE Trans. Robotics Autom..

[18]  Marsette Vona,et al.  Crystalline Robots: Self-Reconfiguration with Compressible Unit Modules , 2001, Auton. Robots.

[19]  Yeoreum Yoon Modular robots for making and climbing 3-D trusses , 2006 .

[20]  Marsette Vona,et al.  Shady: Robust Truss Climbing with Mechanical Compliances , 2006, ISER.

[21]  Marsette Vona,et al.  Hierarchical control for self-assembling mobile trusses with passive and active links , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[22]  Koichi Osuka,et al.  Development of vertically moving robot with gripping handrails for fire fighting , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[23]  Robert L. Williams,et al.  CARTESIAN CONTROL OF VGT MANIPULATORS APPLIED TO DOE HARDWARE , 1998 .

[24]  Daniela Rus,et al.  Self-reconfiguring robots: designs, algorithms, and applications , 2004 .

[25]  Gregory S. Chirikjian,et al.  A hyper-redundant manipulator , 1994, IEEE Robotics Autom. Mag..

[26]  Howie Choset,et al.  A mobile hyper redundant mechanism for search and rescue tasks , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[27]  William Whittaker,et al.  Skyworker: a robot for assembly, inspection and maintenance of large scale orbital facilities , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[28]  Arthur C. Sanderson,et al.  TETROBOT: a modular approach to parallel robotics , 1997, IEEE Robotics Autom. Mag..

[29]  Daniela Rus,et al.  Navigating 3D steel web structures with an inchworm robot , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[30]  Henrik Hautop Lund,et al.  ATRON Hardware Modules for Self-reconfigurable Robotics , 2005 .

[31]  W. Doggett,et al.  Robotic assembly of truss structures for space systems and future research plans , 2002, Proceedings, IEEE Aerospace Conference.

[32]  Daniela Rus,et al.  Shady3D: A Robot that Climbs 3D Trusses , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.